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SUMMARY

In the present context, a compliant robotic structure is one or more
continually flexible beams whose motion can be controlled to manipulate
objects. Typically, a single beam is comprised of many hollow tube elements
placed end-to—-end, where each tube element moves in a particular way when
pressurized with air. Each tube element, made of a reinforced polymeric
material, is designed with directional stiffness properties so that tube
motion (bending, twisting, extension, c&iling) is predictable for a given
external loading and internal pressure history. The basic objectives are to
develop theories for the motion and control of selected single elements and
multiple element systems (beams) to be used a light-weight, fast-acting
manipulators.

To meet the objectives, the first year of this three-year project was
focused on three separate yet related topics. The first involved studies of
an elephant's trunk from the viewpoint of a compliant, continuously flexible
manipulator. The relationships among the load-carrying capacity, material (or
muscle) properties and trunk geometry were investigated and are reported in
Chapter I. Using clues from this animal study, particularly the observations
of how a trunk coils around an object and then lifts it, the second study
involving the nonlinear mechanics of bending and coiling tube-type element
systems was carried out. Those results are reported in Chapter II. The third
study employed the linear theory of elasticity to predict the load and
deformation behavior of cylindrical tubes with orthotrophy in the form of
constant angle helg;s. The quantative results given in Chapter III show that
such a tube element can be used as a torsion actuator, or a manipulator that

twists about its longitudinal axis when pressurized.
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I. MECHANICS OF AN ELEPHANT TRUNK:
THEORY AND MEASUREMENTS
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ABSTRACT

Elephant trunks are versatile and strong. Their mechanical design may

A D MR Wil it

therefore be used as a source of ideas for the design of versatile, strong

robotic manipulators. In this paper a mathematical model of an elephant trunk

1ifting a weight is developed based on assumptions parallel to those used in :

the analysis of prestressed, linear, composite beams. Data on overall trunk
geometry obtained during weight-1ifting and data for the trunk muscle distri-
bution at a cross section are used to calculate an apparent tangent modulus
for the trunk tissue. During 2 change in trunk curvature for which the uni-
form component of longitudinal prestrain remains a constant 30 percent, a
typical value for the apparent modulus is of the order of 105N/m2. This study
represents an initial step toward more refined analyses that rationally re]ate
the loading, the overall trunk geometry and the muscle structure while satis-

fying equilibrium conditions.
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INTRODUCTION

The trunk of an elephant is a tapering muscular structure, completely

;s lacking rigid materials, of nearly circular cross-section. It is versatile

§§ and strong; trunks can shorten, extend, bend, and twist, and elephants have

) been trained to 1ift and manipulate masses of up to 300 kg with their trunks.
ég This study is part of a larger study exploring the mechanics of trunk motion
%‘: and strength, and aimed at discovering principles of trunk design that may be
N used in the design of similar, continuously flexible, versatile, strong

ﬁi robotic manipulators. A further discussion of animal muscular hydrostats and
?;:f robotic mechanics is given by Wilson (1984).

. The purpose of the present study is to correlate original data for the

%} overall geometry of a trunk lifting a load with the reactive forces of the

2? trunk muscles, to measure the average longitudinal strain of a trunk lifting a
?, weight, and then to calculate an apparent modulus of trunk tissue. The

§§' apparent modulus is defined as the average tangent modulus for all of the

%E longitudinal and oblique muscle tissue at a given cross section. This average
f; tangent modulus E, represents the slope of the stress-strain curve in a uni-
ﬁ§; axjal test in which this whole muscle group has a uniform longitudinal pre-

%} strain e,. The method used to calculate the modulus is one that does not

:i require dissection of the animal involved, and may be used by zoologists

gﬁ interested in the apparent modulus of other animal appendages. This modulus
j§ calculated for the trunk may be used as a guide in choosing a material foh

trunk-1ike robotic manipulators.

The size and distribution of the trunk's four basic muscle masses--the

radial, the longitudinal, and the two oblique layers--probably account for the
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elephant's ability to grasp and manipulate loads with its trunk. Although the
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role of each muscle type in trunk movement and load manipulation is not fully
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understood, it is probable that one can draw parallels to the mechanical
behavior of squid tentacles and vertebrate tongues as outlined by Kier (1982).
In this case contraction of selected oblique muscles would lead to torsion of
the trunk about the longitudinal axis, uniform contraction of radial muscles
would lead to uniform trunk lengthening, and contraction of longitudinal and
radial muscles, acting separately or together on one side of the trunk, would
lead to trunk bending.

In this analysis the longitudinal trunk loads (self-weight and payload)
are assumed to be supported solely by the tensions of the longitudinal and
oblique muscles. The corresponding longitudinal strain has two components: a
relatively larger, uniform, contraction prestrain (observed to be 20 to 35
percent before and during 1ifting); and a relatively small strain (two percent
maximum) due to trunk bending and curvature--as the payload is lifted. In
achieving the uniform contraction prestrain, the stress-strain behavior is
probably very nonlinear. The tangent modulus (the slope of the stress-strain
curve) may increase dramatically since muscles are much stiffer after con-
traction (Yamada and Evans, 1970). For the small strains associated only with
trunk bending and small changes in trunk curvature between two states of lift-
ing the payload, the analysis is based on classical beam theory. That is, the
trunk is assumed to be composed of a linear, composite material (the longi-
tudinal and oblique muscles) for which the apparent modulus on the side of the
neutral axis under the least muscle tension is the same as the apparent
modulus on the other side under the most muscle tension. The apparent modulus
of this analysis, then, represents the average value of the tangent modulus
for the muscles involved in incremental bending, given a uniform prestrain.
The analysis implies that during incremental bending there is no change in

chemical structure of the material with load other than the strains imposed on
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the chemical bonds by the load. Clearly, the trunk of a live elephant may not
exactly satisfy all of the assumptions and conditions. However, local varia-
tions in the modulus of the components of muscle cells and fibrous connective
tissues, and other local variations such as possible shifts in the neutral
bending axis and possible nonlinear bending strain distributions, would have
little effect on either the average apparent modulus for the load-carrying
tissue acting as a group, or on the overall mechanical performance of the
trunk. The approach herein represents the first step'towards a more refined
and accurate analysis of the trunk.

Briefly, the analysis and measurements proceed as follows. As described
in the Mathematical Model and Analysis section, a linear strain distribution
at a cross section and force equilibrium were used to calculate the location
of the neutral axis of the trunk. To do this the cross-sectional areas of
muscles were obtained from a drawing of a trunk cross-section and a discussion
of detailed trunk morphology presented in the classical study of the
elephant's head by Boas and Paulli (1908). The drawing of the cross-section
was then estimated to coincide with a particular location along the length of
the trunk. At this location the radii of curvature pp and pj at two 1ift
positions were measured from films we took of an elephant lifting a known
weight with its trunk. The second moment of area of the muscles, I, was
determined from the size and distribution of the muscles in the Boas and
Paulli cross-section. Based on moment equilibrium, pg, P}, and I were then
used, as described below, to calculate the apparent modulus of trunk tissue.

This paper is divided into four parts. In the first two, the Muscle
Morphology section and the Lifting Experiments section, we describe the
sources of our measured data. We develop our mechanical model of the trunk in
the Mathematical Model and Analysis section. We then present our calculated

data in the Numerical Results and Discussion section.
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MUSCLE MORPHOLOGY

Figure 1 presents a schematic drawing adapted from Boas and Paulli (1908)

showing the placement and orientation of the four basic muscle masses and the

two main tendinous masses in a trunk of Elephas maximus, the Asian elephant.

Longitudinal sheets of radial muscles radiate from the connective tissue around
the two nostrils. These muscles insert dorsally and laterally into tendinous
leaves, not shown in this figure, which in turn radiate and connect to a long
tendinous sheet, which is shown, covering the dorsal and lateral muscle of the
trunk. The outer insertion of the ventral radial muscles is not known. Longi-~
tudinal muscles run in the channels formed dorsally and laterally by the radi-
ating muscles. Some of the longitudinal muscles insert into the radiating
tendons attached to the radiating muscles, and some end in the center of the
trunk where their insertion is less obvious.

Two layers of oblique muscle, oriented in opposite directions and one
interior to the other, run down the ventral side of the trunk. Both of these
muscle masses are symmetrical about the sagittal plane. The outer layer
inserts ventrally along the sides of a long ventral tendon and runs laterally
to insert along the sides of the dorso-lateral tendinous sheet. The inner
layer inserts ventrally into the inner portion of the ventral tendon, and the
lateral insertion of this muscie mass is not known. The orientation of the
oblique muscles changes down the length of the trunk. Proximally the outer
layer is almost transverse in orientation, but it gradually changes so that
distally the fibers run almost longitudinally. The inner layer is exactly the
reverse. Proximally, the inner oblique muscle fibers run almost longitudinally
and distally they run aimost transversely. Both the dorso-lateral and ventral
tendons are separated proximally from the skin by a layer of loose connective

tissue; further down the trunk they are more intimately connected to the skin.
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Figure 1 Cross section of an elephant's trunk showing the distribution of
muscles (based on information taken from Boas and Paulli (1908)

by Brad Smith)
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We took 16 mm movies of two mature Asian elephants at the National Zoo in
Washington, D.C. This involved filming the trunks while the elephants lifted 4
payloads at the tips of their trunks. These elephants had trunks about 1.5 m

long when in a fully extended, relaxed state. The nominal outside diameters of

these trunks were about 32 cm at the head and 8 cm at the tip.

For our analysis, we used both data from films and data obtained from
drawings of cross-sections of an elephant's trunk from the Boas and Paulli
treatise. A composite of such cross-sections is sthn in Figure 1. Based on
the position of radial muscles below the nostrils, the shape of the nostrils,
and the re]ative thickness of the oblique muscles in cross-section, we deduced
that this particular transverse cross-section was located at position A-A along
the trunk as shown in scale drawings of photographs, Figures 2. The length
scales shown in Figures 1 and 2 are those for the Asian elephant that we
filmed. The important assumption we used in deriving the particular numerical
results that follow is that the muscle mass distribution for section A-A in

Figure 2 is geometrically similar to that of Figure 1.
LIFTING EXPERIMENTS

In preparation for a typical experiment involving a live Asian elephant,
white zinc oxide spots were first painted along the midlateral line on the side
of the trunk, as shown in Figure 2. Each white spot was located along the
trunk at a distance % from the spot nearest the head. The trunk was photo-
graphed in what appeared to be its longest and fully relaxed state, in a near
vertical position.

The sequence of events involving the elephant 1ifting a payload with the
tip of its trunk was recorded using a Canon Scopic 16 mm movie camera situated

about 12 m directly to the side of the animal. Trunk motion was in the
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Figure 2

Trunk contracted with payload on ground (a); payload at an
intermediate position (b); and payload at its highest position

(c). Traced from projected movie images.




,4{ vertical plane, parallel to the side of the animal and perpendicular to the

kﬁ plane of movie images. The sequence of events was as follows.

ﬁf 1. The trunk tip looped around the rope attached to a payload mass of

Et\ 26.2 kg. With the payload still on the ground, the entire trunk shortened and
t thickened before lifting, resulting in the configuration of Figure 2a. The

?f‘ average longitudinal contracted strain ¢, was deduced by comparing the loca-

sz tions of the trunk spots in the relaxed and contracted states. That is, each
Lt spot moved from its relaxed position £ by an amount AL; as depicted by the in-
g‘ sert of Figure 3. The results are plotted as circles in Figure 3, from which
Eif the slope or initial strain before lifting was deduced by a least squares

ifu straight line fit as ¢, = -24.4%, a nearly uniform value along tﬁe trunk.

T?? 2. The coiled trunk tip stretched a bit while the elephant lifted its

,E& head and dragged the payload along the ground.

EF« 3. The payload was lifted by an upward motion of the head, accompanied by

;ﬁg a further shortening of the trunk, and a further curling motion of the whole

f§§ trunk., Figures 2b and 2c depict the trunk with the payload lifted to an inter-
f; mediate and the highest position. The average value of ¢, for these last two

:3 positions based on the data of Figure 3 were -31.5% and -33.0% respectively.

§  A careful study of enlarged prints from the film showed that the radius of

:*; curvature p traced by the white dots in the plane of motion changed signifi-

f% cantly., The values of p and the corresponding uncertainties in measurement *
;?j op at section A-A of the trunk were measured as pg = 1.18 m * 0,06 m and p; =

'}é 1.67 m = 0.25 m, corresponding respectively to the intermediate and highest

;S positions of the trunk shown in Figure 2. The analysis that follows relates
ﬁé these bending strains to the radius of curvature.
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;‘ Figure 3 Straight lines indicate uniform trunk -contraction (constant
5» gradient of deformation) for the three conditions of Figure 2.
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MATHEMATICAL MODEL AND ANALYSIS

The purpose of this section is twofold: to define a rational, static,
mathematical model of the trunk muscle system that supports both the trunk
load and payload and to calculate the apparent elastic modulus of the trunk at
section A-A when the trunk is between the two positions shown in Figure 2b and
2c. A few simplifying assumptions are needed. First, the longitudinal strain
ey due only to trunk curvature p has a linear distribution from dorsal to

ventral. That is

€ s-% (1)

X
where Figure 4 depicts this strain at position y from the neutra]iaxis of
bending. This linear strain distribution superimposed on the uniform con-
tractual strain ¢, from muscle pretension gives the total strain at the trunk
cross section. Second, in comparison to this total strain distribution, it is
reasonable to assume that ey = vy, = 0, where ey is the normal strain along
the y direction and vyy is the transverse shear strain due to changes in the
bending moment and curvature along the trunk. These assumptions, which are
consistent with elementary beam theory, lead to an expression for the normal
strain €g along the length of each oblique muscle inclined at an acute angle ©
with the longitudinal axis (Figure 3 and 4) or
eg = €,c0528 (2)
Equation (2) follows from the strain transformation equations derived, for
instance, by Timoshenko and Goodier (1951), where €y and Yyy are zero.
The third assumption is that the longitudinal tensile stress in each

muscle mass is linear with its longitudinal contracted strain, or

ox = - E5 &3 og = - E5 € (3)

where oy and og are the normal stresses for the longitudinal muscles and
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> oblique muscles, respectively., Here, E; is the apparent elastic modulus of
L
{ the muscle mass, which is assumed to be the same for each muscle type.
FE AR
3?ﬁ§ The fourth assumption is that only the muscles carry the stresses set up
SN
.§$~ by the trunk's own mass and by the payload. Thus, the tissue surrounding the
-
Ry n
muscles, although following the linear strain distribution, has a negligible
%;} stiffness compared to the stiffness of the activated muscles. A consequence
o™
e
?‘ﬁ; of these assumptions is that the neutral axis in bending does not shift for
W -
small changes in trunk curvatures. The accuracy of these assumptions is not
-
e known.
o
?ﬁr At a typical cross section such as A-A in Figure 4, the condition of
e -
**; force equilibrium in the x direction, or perpendicular to this transverse
(TFL
-tg section, must be met. This equilibrium condition establishes the location of
¢2ﬁ the neutral axis y=0, or the plane along which the muscle strain due to trunk
AL
curvature alone is always zero. Force equilibrium is expressed as:
o [ o dA, + | og cos2e dAg = O (4)
P,' Ay Ao
<5y
5

where A, is the total transverse cross sectional area for the longitudinal
muscles and A, is the total observed cross sectional area of the oblique
muscles projected on the same transverse cross section (the x=0 plane). From
Figure 5, it is observed that for the oblique muscles the cross section area
element normal to og is dA,cos®, that the corresponding force is og cos® dA,,

and the component of this force projected along x is thus og cosZe dAg, which

leads to the second integral on the left in Equation (4). With Equations (1),

(2) and (3), Equation (4) is rewritten as

M el

J] ydAx + [ y cosde dAp = O (5)
Ax Ao

T
o2 ofell

A practical way to locate the neutral axis is as follows. As shown in

$ iyl -
B Figure 4, the neutral axis at y = 0 is located at a distance z from a datum
0
\
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G
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Figure 4. Definitions of trunk geometry and longitudinal strain.
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axis chosen as the ventral edge. If the centroid of the area for each muscle
i of area Ayj or Ay is located at y = y;, then the centroidal distance zj
from the datum axis is defined as

2i = Z - ¥ (6)
When Equation (6) is combined with Equation (5), with the differential areas
replaced by the areas A,;j and A,j, and the integrals replaced by finite sums,
the result is a practical formula for locating the neutral axis. That is

N M

; ZA 5+ 1 Z;A icos4ei

. i L o
7 =2 1N 1M1 (7)

where there are N longitudinal muscles and M oblique muscles at a cross
section. Care must be taken to use the correct angles for the oblique muscle
areas. For instance, for section A-A of Figure 5, 8 = 85 = 29,1 deg for the
inner oblique muscles and © = 6; = 34,1 deg for the outer ablique muscles.
Having located the neutral axis, the bending strain distribution can be
calculated from Equation (1) if the radius of curvature is known. Of interest
here is the change in the bending strain distribution between two loading
states at section A-A. For instance, the difference in longitudinal
muscle strain aey for a trunk configuration in its highest position (Figure

2c) for p = p] and in its intermediate position (Figure 2b) for p = py is

be, = o= o (-L) =L (8)
X s\ Po P
where
I Pof1

At a fixed location y, the chdnge in strain deg in a typical oblique muscle

will always be less than Ae,, or from Equation (2)

=




de, = --% cosze (10)
[]

]
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Accompanying these strain changes Ae, and Aeg during lifting are

:

&j corresponding changes in the normal stress distributions, Aoy and Acg. These
o are the muscle reactions in response to shifts in two types of external loads
?: causing moments at section A-A. One of these loads is due to the trunk mass
§? segment my (below section A-A to the tip) which causes a differential moment
; ; of myg(d1-dy). The other load is due to the payload mass m, which causes a
¥ differential moment mog(ej-ey). The load offset distances d,, dj, e, and e;
{é are defined in the free body sketches of Figure 6. For moment equilibrium at
a8 Section A-A, it follows that
S myg(d1-dg) + myg(ej-eq) = [ 'y boydA, + [ y Bog cosZedAg (11)
-4 Ax Ao
§§ Here Ao, dA, and Aog cose dA, are the changes of the x-directed forces in the
f' longitudinal and oblique muscles, respectively, which, when multiplied by
W?Q their moment arms y and integrated over section A-A, leads to Equation (11).
7:? Invoking the linear relationships of Equations (3), along with Equations (2),
?;, (8), and (10), the differential stresses become
L
: b0, = - Ey be, = Ea% (12)
:‘ Moy = E, beq = E, Y‘_: cosZe (13)
T;j With Equations (12) and (13), Equation (11) can be solved for the apparent
éﬁ modulus, or
;
$: Ey = 1 [m9(d)=d ) + mgle;-e,)] (14)
%k; where ; is given by Equation (9) and I, the second moment of the muscle area
R with respect to the neutral axis (y=0), is

3
i3 16
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Figure 6. Free bodv sketches of a contracted trunk at
two positions.
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I = [ y2 dAy + | y2 cos%e dAg (15)
x Ao

With a knowledge of the muscle morphology as shown in Figure 1, along with
trunk curvatures and the loading terms, the apparent modulus E; may be
calculated from Equations (14) and (15). Then the differential stress and
strain distributions due only to a curvature change may be calculated from
Equations (12) and (13). The appropriate measurements and typical numerical

results are now discussed.
NUMERICAL RESULTS AND DISCUSSION

To obtain the desired numerical results, a clear and properly scaled out-
line of the longitudinal and oblique muscle areas at Section A-A is needed.
Such a drawing, deduced from the Boas and Paulli treatise (1908) is shown in
Figure 7. This muscle'distribution and the measured data listed in Table 1
were used to calculate the apparent trunk modulus. The geometry of Figure 7
was scaled to match the cross section A-A of our subject animal's trunk, for
which the section height D (Figure 4) was measured from photographs as 24 cm.
Of the 150 muscle areas shown in Figure 7, 78 are longitudinal, 51 are inner
oblique (8 = 29.1 deg), and 21 are outer oblique (& = 34.1 deg). Using a fine
grid overlay, each muscle area or projected area and its respective centroidal
distance to the datum plane was calculated. The total areas A, and A, are
given in Table 2. With the values of © measured from drawings in the Boas and
Paulli treatise (1908), z was calculated from Equation (7) as 12.0 cm. Since
D = 24 cm, the neutral axis lies at the mid-height of this cross section; The
value of I was then calculated by numerically integrating Equation (15),
yielding 1 = 4270 cm?,  of course, these numerical results, although precisely
calculated to three significant figures, are only as accurate as the artist's

original drawings of the muscle distributions.

18
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Symbol and Value

D =24 cm
do = 5.0 cm
di = 8.0 cm

eg = 9.29 cm

e} = 13.27 cm
Ly, bRy
mp = 26.2 kg

me = 16.37 kg

M =78

N=T72

Y = 1180 kg/m3
8 = 29.1 deg

8 = 34,1 deg
pp = 118

p1 = 167

bpg = £ 6 cm

8py = 25 cm

P S A rani i e I Sk ™ (e Pl S S M e i s - & S

Table 1 - Summary of Measured Data

Meaning

trunk height (y direction) at section A-A
offset distance of my (intermediate), Fig. 6a
offset distance of my (highest), Fig. 6b
offset distance of My (intermediate), Fig. 6a
offset distance of My (highest), Fig. 6b

spot locations, plotted in Fig. 3

mass of payload

mass of trunk from tip to section A-A

number of longitudinal muscies at section A-A
number of oblique muscles at section A-A
mass density of trunk

inclination of inner oblique muscles, Fig. 5
inclination of outer oblique muscles, Fig. 5
radius of curvature of section A-A, Fig. 6A

radius of curvature at section A-A, Fig. 6b

PRPEA 15} "Ry

uncertainty of p, measurement

AN

uncertainty of pj measurement

gl
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Table 2 - Summary of Calculated Data

Symbol
and Value

A, = 54.6 cm@

A, = 185.7 cm?

Ey = 1.33x106 N/m?
8E, = * 0,532x106 N/m?
1 = 4270 cm?

z =12.0 cm

ao, = 3.22x10% N/m?

g = 2.23x10% N/m?
Aog = 2.37x10% N/m2
se, = 0.0242

acg = 0.0168

seg = 0.0178

gy = =0.244

g, = -0.315

ey = -0.330

o = =402 cm

Equation
Meaning or Figure
gggap?:ngll longitudinal muscles on Fig. 7
e od Aroner oblaver ‘160 cnts suter T
oblique: 25.7 cm?)
apparent modulus of trunk Eq. (14)
uncertainty in Ej Eq. (16)
area moment of all muscles Eq. (15)
location of neutral axis Fig. 4
max. stress change, longitudinal muscle Eq. (12)
max. stress change, inner oblique muscle Eq. 13)
max. stress change, outer oblique muscle Eq. (13)
max. strain change, longitudinal muscle Eq. (8)
max. strain change, inner oblique muscle Eq. (10)
max. strain change, outer oblique muscle Eq. (10)
uniform strain, lowest position Fig. 3
uniform strain, intermediate position Fig. 3
uniform strain, highest position Fig. 3
differential curvature Eq. (9)

ooy




The external moments at section A-A due to the payload and the trunk mass

were measured for the trunk in two different positions: the intermediate and
the highest positions shown in Figures 2 and 6. The reason for choosing these
two positions was that the uniform component of longitudinal trunk strain was
nearly the same for both positions (e, was 0.315 and 0.330, respectively).
Thus, the radii of curvature py and pj 3as measured from photographs did not
need to be corrected to account for changes in ¢;. The importance of highly
accurate measures of these radii to an accurate calculation of the apparent
modulus will be discussed below.

The quantities defining the differential moment between the selected
trunk positions are enclosed in the square brackets of Equation (14).
Measurements were made for each of these quantities. The payload mass mp was
26.2 ky. The offset distances e, and e; for this load, as well as the volume
seyment of the trunk from tip to section A-A, were deduced from photographs
(see Figure 6). The centroidal distances dj and dp for this volume segment
were calculated assuming that the volume was a series of right, truncated
cones. The volumes of the two nostrils, deduced from the Boas and Paulli
treatise, were treated as voids. The product of this volume segment and the
trunk's mass density then gave the value m¢ = 16.37 kg. Our measurements of
the mass density, made on selected samples from different areas of a dead
elephant's trunk, yielded an average mass density of 1180 kg/m3, with a
maximum variation of 8 percent among samples.

The remaining quantity needed to calculate E, given by Equation (14) is
the differential curvature ;. This is defined by Equation (9) in terms of the
radii of curvatures p, and p; at section A-A. Accurate measures of these
radii were more difficult to deduce from enlarged photographs than the data

previously discussed. More closely spaced and more carefully aligned white

22
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spots along the trunk would lead to better measurements. In the present case,

A
At

Al Po = 118 £ 6 cm and py = 167 £ 25 cm, showing an uncertainty of 5 percent and

¢

15 percent, respectively. For the nominal values of the radii, Equation (9)
gave ; = =402 cm.

Using the measured data discussed above and summarized in Table 1, the
o apparent modulus was calculated from Equation (14), or E5 = 1.33 x 106 N/m2,
It is interesting to note that this modulus compares favorably with the

tangent modulus of human Sartorius muscle (1.77 «x 106 N/mz) and dog Rectus

;fi; abdominis muscle (4.0 x 106 N/m2) at prestrains of 60 to 65 percent, as

ﬁ?f estimated from data presented by Yamada and Evans (1970). Also, this modulus

?33 agrees within 10 percent with Young's modulus of a commercially available,

;2: synthetic rubber, Type A6UB*.

éﬁ; Further calculations lead to the differential strain distributions in the

% longitudinal muscles, dey, and in the oblique muscles, Aeg, and their

}3; corresponding differential stresses, Aoy and Acg. The maximum value for each |
liiz of these quantities was calculated from Equations (8), (10), (12) and (13)

~jx based on the maximum distance y extending from the neutral axis to the

E*i centroid of the most outlying muscle. The numerical results summarized in

E%ﬁ Table 2 reveal that the maximum differential muscle strains range from about

;%i 1.7 to 2.5 percent, and the maximum differential stresses range from about 2.2

in‘ x 104 to 3.2 x 104 N/mz. In fact, at any chosen distance y from the neutral |

axis, calculations showed rather narrow ranges for the differential strains

and differential- stresses among the three types of muscles. It is apparent

that the muscles do a good job in sharing the load at this cross section.
Given the validity of the mathematical model, for which the main

assumptions were the linearity of strain over the cross section and the linear

FManufactured by The Lord Corporation, Erie, PA.
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stress-strain law, the accuracy of the numerical results were found to depend
strongly on the accuracy of p, and pj. These were the most uncertain of all
of the measured parameters. The analysis of Kline and McClintock (1953) may
be used to show just how sensitive the calculation of E; is to the measured
uncertainties apy and 4py of p, and pj, respectively. The corresponding

uncertainty in Ea, or AE; for these two parameters only is given by

aEa 2 3Ea 211/2
AEa = (3—90 AD°> + <a—pI A91> ' . (16)

When p from Equation (9) is substituted into Equation (14) and the result is

differentiated according to Equation (16), the result is

;:_a ) m (oy* 802 + 0" 20,71 (17)
With the nominal values of the radii and their deviations as listed in Table
1, the numerical value of AE,/E, calculated from Equation (17) is 0.40. Thus,
for relatively small uncertainties in radii (5 percent and 15 percent), the
uncertainty in the apparent modulus is 40 percent, where E; = 1.33 x 106 H/m2
* 0,532 x 106 H/m2.

Further studies are now underway that involve microscopic studies of
muscie morphology at different cross sections in a dead elephant's trunk, and
also the direct measurements of tensile properties of connective tissue. As
further data becomes available, the present mathematical model may be refined.
Thus, more exact connections may be deduced among the trunk's system
parameters including its external loading, its overall shape during lifting,
jts muscle distribution, and the mechanical properties of its muscles. The
results may provide clues to future mechanical designs of continuously

flexible robotic manipulators made of polymeric materials.
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NOMENCLATURE

total area of oblique muscles projected on the x=0 plane
projected area of i-th oblique muscle on the x=0 plane

total cross sectional area of longitudinal muscles in the x=0 plane
cross sectional area of i-th longitudinal muscle on the x=0 plane
trunk height in y direction at section A-A

moment arms of m., Figure 6

apparent modulus of trunk

uncertainty in E;

moment arms for Mo Figure 6

gravitational constant

second moment of muscle cross sectional areas, Equation (15)
distance of the i-th spot, Figure 3

number of oblique muscles at a cross section

mass of pay load lifted at trunk tip

mass of trunk from tip to section A-A, Figure 6

number of longitudinal muscles at a cross section
longitudinal coordinate along trunk's neutral axis
transverse coordinates measured from neutral axis, Figure 4
transverse coordinate of i-th muscle, Figure 4

location of neutral axis from ventral, Figure 4

transverse shear strain

normal strain in longitudinal muscles

normal strain along y

normal contraction strain in oblique muscles

uniform trunk contraction strain

displacement of i-th spot along longitudinal axis
25
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Aex

Ate

differential longitudinal strain due to trunk curvature change
differential strain in oblique muscles due to trunk curvature change
acute inclination angle of oblique muscles with the x-axis
value of 6 for the i-th oblique muscle

radius of curvature of trunk's neutral axis

value of p at section A-A, intermediate load position
uncertainty in p, '

value of p at section A-A, highest load position

uncertainty in pj

differential radius of curature, Equation (9)

normal tensile stress in longitudinal muscles

normal stress in transverse direction

normal tensile stress in oblique muscles

differential stress corresponding to e,

differential stress corresponding to Aeg
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I1. MECHANICS OF A CONTINUOUS MANIPULATOR MADE OF A
NONLINEAR, COMPOSITE MATERIAL

ABSTRACT

This research deals with the analysis of light weight, flexible and
fast moving robotic arms. A typical arm consisting of hollow cylindrical ele-
ments, bends and coils around a load and moves it to the desired position by
varying the internal pressures in the individual elements. The theoretical
derivations relating arm positions and loading incorporate nonlinear material
properties and large deflections. A learning program is developed that stores
information about arm motion, information that is used in subsequent manipula-
tions to achieve efficient 1ifting scenarios. Typical numerical results for

arm designs will be verified experimentally in the near future.
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INTRODUCTION

Robots are programmed machines designed to carry out desired tasks for
humans [1,2]. Their use in the industry is rapidly increasing and extensive
research is underway with the aim of improving their capabilities. Robots can
be used to efficiently carry out routine tasks without making the mistakes
that a human would because of fatigue. Also robots can be used in
environments which are harmful to the health of humans.

Mechanically most of the present day robots have arms consisting of
rigid members connected by hinged or pivoted joints. To move such an arm
precisely, the movements of its various members have to be coordinated. Such
robots are slow-acting because of the inertia of the members and the time
required to compute and control position,

A different approach using a light-weight, highly flexible, fast
moving arm is made in this research. Such an arm is analogous to an
elephant's trunk which has been analyzed recently [3]. It was observed that
trained elephants can efficiently coil their trunks around heavy loads and
1ift them to desired positions. The present study simulates the action of an
elephant's trunk within the limits of structural feasibility. The robotic arm
is a continuous manipulator of rubber or polymeric material, consisting of
hollow cylindrical elements joined end to end. The elements are selectively
reinforced so that they bend, twist or extend when pressurized. Theoretical
derivations and computer programs are written to evaluate the internal
pressure required in each of the elements such that the arm can coil around a
load and lift it to a desired position.

This research also deals with another important aspect of robotics.

As machines cannot reason or think like humans, the robot has to be programmed
to anticipate the various options or remedial measures, in advance of motion.

Thus some aspects of Artificial Intelligence are incorporated into this

research. A new Learning Program evaluates the end moments to be applied to




each of the elements in order to 1ift and position the end load. This
program's database is updated appropriately each time the program is run,
thereby increasing the apparent knowledge and efficiency of the program in
performing load positioning calculations.

The theoretical derivations for the mechanical behavior of the
pressurized elements, the programming logic, and some numerical results for a |
typical, flexible robotic arm are discussed.

ANALYSIS OF A TYPICAL ELEMENT

The geometry of a typical element is shown in Figure 1. It is a thin !
walled cylinder with the ends sealed and with reinforcement on the underside.
The element is modelled as a cantilever beam of a nonlinear material. As in

(4], finite deflections are considered. Given the applied end moment due to

internal pressure, the horizontal and vertical deflections of the end of the
beam are evaluated. The radius of curvature of the deflected beam is also
computed. In this analysis, [5] was also used.

The hollow, cylindrical section is made out of a synthetic, nonlinear
material for which the stress strain relationship is as follows

o = Ae + Bel/n
where A, B and n are material constants.

The synthetic material can withstand high strains (up to 200%) without
failure. The reinforcement is made of high strength steel shim or synthetic
fibers with high tensile strength (Kevlar, for instance) as shown in Figure 2.
The reinforcement provides the strength to the structure. The neutral axis
for the composite element passes through the reinforcement because its stiff-
ness is much greater in magnitude than that of the synthetic cylindrical
section. For this reason with the application of internal pressure and thus

an end moment, the element bends as shown in Figure 1. The reinforcement is

assumed to be a linear material.

.............................
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ke Because the cylindrical part of the composite element is made up of a
2% nonlinear composite material, the position of the neutral axis varies and has
Y

i ; to be computed for each stress distribution across the section. Given an

2%

7
-

applied end moment M, the following iterative steps are required to calculate
e the position of the neutral axis.

‘ég a. Choose an initial position of the neutral axis.

n b. Compute the radius of curvature p for the deflected element for

- the chosen position of the neutral axis.

T c. Compute the moment of resistance M. of the section for the
computed p and the chosen position of the neutral axis.

d. If the following inequality holds for a specified tolerance limit

€
M - M
K- SN~ P
10 Ma
) \
2 i
(- then the iterations stop. Otherwise a new position of neutral
oy X
. axis is chosen and steps (b) to (d) are repeated. See Appendix A
)
$$. for the details of calculation. 3
pr ;
" Derivation of End Deflection Formulae é
e After the position of the neutral axis and the radius of curvature 3
fj: have been determined for the given end moment, the end deflections are 3
b computed in the following manner. '
..\_7
{3 We know the moment curvature relationship as given by equation (A.21
tﬁ in Appendix A). The equation is repeated here as follows
I cAya s Lye e (Lo
K M. = (p) + (p)B + (p) n

e
S

“ Un rearranging the terms we yet 3

P

'




where

2
1+ [y' (x)1%%2 @

Equating Equations (1) and (2) we get

y'(x) M- ¢

Qv by PP avE )

Equation (3) is a second order differential equation which can be integrated

directly with respect to x to yield

y (%) (W -9
a+ ' P et e

x+c1

The constant of integration, ¢j, can be evaluated using the fact that y'(O)

0. Thus ¢; = 0 and

V' (x) i (MC - £) )
{1+ [y'(x)]2}1/2 (a + B)
Solving for y'(x) yields
. (M_ - &)x
y (x) = < (4)

Jla+ 8% - (m_ - )%

By integrating once more one obtains

(a+ 8) = [(a+ e)2 - (M, - 5)2 21172
y(x) = O 5)

c
where the constant of integration has been evaluated using the condition that

y(0) = 0.
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To evaluate the horizontal deflection, &p, at the free end of the

beam, as shown in Figure 3, the equation for the arc length is used. The

3 total length then is

L-§
L=f, "1+ 07 o (6)

e From Equations (5) and (6) we obtain

L = fO h at B dx (7)
Jla+ 8 - (n_ - 6)%

R This integral can be evaluated using the trignometric substitution.

+
iy X = Ma - g sin © (8)

- - it cos 8 d 6 (9)
“

;33 From Equation (8)

T . (MC - E)
& 8 = sin XW]
r)‘ when

\ X = L-6p

.h"i - (M - E)
";',» e(at x=L-5h) =9 = sin” [(L -8 ) W] (10)

Using Equations (9) and (10) from Equation (7) we get

2
L = ? (a + B)" cos ©

de

", - af (a+ 87 - (a+ 8)sin%e

!

'3 . (a+ 8) g

y RO e

o oy 1T UL - 8) (1)
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Figure 3. Cantilever beam subjected to an end moment.
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ANALYSIS OF MUTION AND LOAD-CARRYING CAPACITY OF A
CONTINUOUS MANIPULATOR ARM

The manipulator arm is made up by joining a number of the 'typical’
elements, end to end. The desired capability of the arm determines the size
and number of elements in the arm. The last few elements, (3 in our model)
coil around the load, whereas the remaining elements help in the lifting of
the load. Refer to Fiyure 4b,

Given an applied end moment, as shown in the previous chapter, we can
evaluate the end deflections, and thus the end coordinates of the element with
respect to the local coordinate axis system of the element. These end
coordinates are transferred from local to global coordinate axis system by
using a transformation matrix.

Similarly we can carry out the transformations for each of the
elements and get the overall orientation of the arm in the yglobal coordinate
axis system.

When the end moments are changed, we can by the same procedure,
compute the new orientation of the arm. The self weight of the elements is
neglected throughout in our derivations,

The horizontal deflection, &,, at the free end can be obtained from Equation

(11) as follows )
M -
- - a+ B . (ol
Gh =L Mc i sin [L W] (12)

The vertical deflection at the free end can be obtained by substituting (L-&p)

for x in Equation (5) to yet

- §)
GV ':+ BE [1 - cos{L W)—}] (13)

(o
Thus knowing the end moment values the end deflections dy and &y can
be computed from equations (12) and (13) respectively, after the position of

neutral axis and the radius of curvature have been computed.
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! (b)

(li.’i)

Fiqure 4. Unpressurized elements (a);three end elements
pressurized (b).
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k2 Derivation to Transfer Local End Coordinates to
' Global End Coordinates

e As the bending moment is constant for an element, the radius of

% curvature p is constant. It follows from the sketch above that

.",; L
i | _ LA (14)
As shown in Figure 5a f6r the first element the global and local axis
coincide.

For the remaining elements the relationship between the local and

global axis system is as follows.

X X2 cos ¥q sin ¥, X1
= +
Y ¥2 -sin ¥ cos ¥o y1
3 - - o b o - o
where
39
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First element showing coincidence of local and global axes (a);
and second element showing displaced local axis (b).

40

R S
o> P

Ve T e R
LT D N o R e S
SRS S AL PR 0 AR R

P
.

.

[CR FERPIE S T VR

Bal il Al A DS R A A A D 2 n s puvh pint Rih S atd A¥D aia‘mis aNmaisads asaeong- o o W]

W R WY e




WO W eI LAl ta i Sal il sl Afa At 2oe A s i lan Ale Gia St Ron S 8 B n St ot et Shp Bah Bal Rad Saf et Rt Jadl W Sl I
‘

¥y is the angle which the x' axis, of the local coordinate axis system

of the element, makes with the x axis of the global coordinate axis
system,

X2,y are the coordinates of the oriyin of the local coordinate axis
system in terms of the global coordinate axis system.

X]1,y] are the coordinates of any point P in the local coordinate axis
system.

X,y are the coordinates of the same point P in the global coordinate

axis system. |

In our case the point P is the end point of the deflected element.

x] =L - &,
(15)
y1=-9%
where
6n = horizontal deflection
§y = vertical deflection
For the next element
L
¥ =y +—c (16)
on oc c

The subscripts n and ¢ mean next and current, respectively. The oriyin for
the local coordinate axis system for the next element, is the end coordinates

of the current element

X2n = X¢ (17)
Y2n = Ye¢

Now using the transformation matrix, the end coordinates of the next
element can be converted from the local coordinate axis system to the global

coordinate axis system. Similarly, this can be done for all the remaining

elements.
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Evaluation of End Moments
It is required to compute the end moments to be applied on each of the
hén elements such as to move the load from its initial position to the final
desired position.

An example of a manipulator arm is shown in Figures 4a and 4b. The
first five elements have the shim (or reinforcement) on the right side whereas
the remaining five elements have it on the left side. When these elements are
pressurized there will be a reversal of curvature after the fifth element.
Also by positioning the elements in this order, the arm has added capability
in moving the load over a wider region.

Initially the load is assumed to have no mass. Then the end moments
Mo, to elastically bend the arm and move the load to its desired position are
computed.

Secondly, after the arm has reached its final configuration, we know
the coordinates of the end point of each element and also the coordinates of
the center of gravity of the load. Thus the additional moment due to the load
Mg, (the load is now supposed to have mass) can now be easily evaluated.

The total moment Mg = Mp + Mg

Evaluation of M,

It is observed that there is no unique set of M,, which can shift the
load from its initial to the final position. The moments in some elements
could be increased whereas the moments in some other elements could be
decreased and the load could possibly be still in the same position. To
overcome this problem, an iterative procedure has to be used. The iteration

steps are as follows.
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a. The end moments Mgy to coil the last three elements around the load

are first evaluated.
b. For the remaining elements initial guess moment M, values have to
be provided. (In the next chapter a better approach is explained). d
c. Knowing the end moments M, in each of the elements, we can compute
the end deflections (8 and &) and radius of curvature p, by the method |
discussed in Chapter II. The transformation matrices can then be used to get

the overall orientation of the deflected arm (method is discussed earlier in

this chapter).
d. The present position of the center of gravity of the load is now
calculated as shown in Figure 6b:
Xxp = x4 - (Rg + Ry + H) cos (¥)
Yp = yd - (Rg + Ry + H) sin (¥)
Now the following inequalities must be simultaneously satisfied for the
specified tolerance limits €] and ep, respectively.
|xp - xg| < € (18) i
lyp - yel < €2 (19)
where xf and yf are final desired position coordinates of the center of
gravity of the load. If the inequalities (18) and (19) are not satisfied, the
moments in the elements have to be varied in such a way that the load moves

closer to the final desired position.

The present position of the load can be in any one of the four regions

shown in Figure 7. The change in moments can be done logically as follows.

e TE IR NG | e ol W LT L

Refer to Figures 6a and 7.

i. When load is to the right and higher:

s _c e s

xp>xf

Yp > yf
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Fiqure 6. Slobal position of the load (a); and global
) position of the end element (b).
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Figure 7. The four regions in which the load could be
currently nositioned.
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Then increase the moments in the elements of the type L.
ii. When the load is to the left and higher
Xp < Xf
YP > ¥f
Then decrease the moments in the elements of type L and of type
u.
iii., When the load is to the right and lower
Xp > Xf
YP < yf
Then increase the moments in the elements of type U and of type

L.
jv. When the load is to the left and lower
Xp < Xf
yp < ¥f
Then decrease the moments in the elements of type L.

After making the requisite moment changes in the elements, which
depends on the current orientation of the arm, we continue the iterative
procedure from step (b) onwards, till the condition in step (d) is satisfied.

Step (a) is carried out only once as the moments required to coil the

elements around the load cannot change since the dimensions of the load are

fixed.

Evaluation of Mg

At the end of the iteration procedure, for the evaluation of My, the
load will be somewhere near the final desired position. In this orientation
of the arm, we know the center of gravity of the load and the end coordinates

of each element. Knowing this, we can evaluate the additional moment due to

the load.
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Since we do not precisely know the point of contact between the load
and the last 3 elements coiled around it, we assume the worst case and apply
an additional moment as given below.

M£=N1 (R1+R2+H)

(For the last 3 elements My is taken as same and is on the higher side)
We can compute the additional moments in the other elements from the ;
free body diagram shown in Figure 8.
= W1(Ry + Rg + H) cos (6)
Mg for element type U, say element 5 is :
Mg = Wi(xe - xq) - My #
Mg of element type L, say element 6 is |
Mg = Mp - Wi(xc = Xa)
Similarly we can evaluate My for all the elements. i
Now for each of the elements we can evaluate

After the end moments required to be applied to each of the elements
have been evaluated, the internal pressures required in each of the elements
can easily be computed. As shown in Figure 9 (an arm with 3 elements only),
there are three end moments, M}, M; and M3 and three different pressures

P1, P2 and P3

where
2
M3 = P3mR23d3
2
M2 = (P2 - P3)mRp2d2
2
Mp = (P - P2) mR21d4

where R21, R22, Rp3 are the internal radii and d;, dp, d3 are the distances

between the center of pressure and the neutral axis for the three elements.
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Figuré 8. Free bodv diagram of arm without the last three elements.
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a& 1 IMPLEMENTATION OF THE LEARNING CONCEPT
e
\ A FORTRAN proyram has been written to evaluate the end moments
ey . . . o
; fi required in each of the elements, to move the load to its desired position.
f;t& As mentioned in the previous chapter, apart from other input, initial guess
" end moment values My are required to start up the iterative procedure.
e . ) . .
olg It was observed that a faster converging solution was achieved (i.e.
o
1938 . .
‘:ﬁ number of iterations were reduced), the closer the guess values were to the
actual solution. Also the user who wants to use the robot, initially has
o
.':ﬁ little or no idea about what guess values to provide. Therefore the user is
Ui
-ﬁf liable to input guess values which could lead to numerous iterations and
thereby waste expensive computer time.
-fﬁ? As a remedial measure, it was decided that the program instead ot the
o user should decide about the guess values. Thus the program was modified 1nto
4
I .
_ a 'Learning Program’'. The program has a data structure, which for different
~lif initial to final load positions, has the corresponding required end moment
:;%1 values M,. Now given an initial and final load position, the program searches
) through its data structure to locate the ‘'guess' end moment values to start
-\'\:
“§:. the iterative procedure. Everytime the program is run, at the end of the
b
;iﬁ iterations, the data structure is updated appropriately, thereby increasing
A
) the apparent knowledge of the program.
e
PR
- A FORTRAN program has been written, which carries out all the
%23 iterative computations, matrix transformations etc., discussed in this
WA
Le chapter. The program also takes care of another important aspect, i.e. the
e N
::}; user does not have to provide the initial guess end moment values My, to start
K
o the iterative procedure. As discussed in the next chapter, the program
l&s
et searches through its database to come up with the requisite guess values.
ltjg
%)
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!' 50
|J
5 s e T, s
(! e A.‘ L ....i:':_..'.:_:"; - : ;; _.A_j._{.!-\:;‘ ‘." ':.;._';'- '; _; "‘:_.":1.‘-. -;}«{.)"..'.‘.)".'p."l...-“-‘.."-"-;;';h.':;..'i L A; -“---"-.“"- .v. "—.‘V:.' '..'L.’.-L-":i}l.f;:"-'"".::P}.f




L R A A |

N
&S
N

.‘1'{
L )

B

&

LAY,

P - 2';"'7"
.
{.1“.“. e

The data structure required to implement this 'Learning Concept',
could have been appropriately implemented in a language like Pascal using tree
structures. In our case as the remaining programs were in FORTRAN, we
persisted with FORTRAN and had to use a five subscripted array as the data s

structure.

Data Structure and Search Logic:

As shown in Figure 10, given the coordinates of the initial and final
positions of the load, we can uniquely define the initial and final position
of the load, by the four parameters RAD, ¢, 6 and DIS. The four parameters

are defined as follows

RAD = [x4)2 + (yi)2]1/2 (20) :
1.5 |

$ = Tan" " [—] (21) ]
‘yi [

DIS = [(xf - x§)2 + (yf - yj)2]1/2 (22) ]
(x, - x.) “

8 = cos™1 ——IﬁTg—l-] (23) 3

For each set of four such parameters we have corresponding end moment

values M,. Therefore when we search for the most accurate guess values, from

a B &

the available data structure, a search through each of the four parameters is
required. To simplify the search procedure, a five subscripted array

D(I,J,K,L,N), was used where the

First subscript corresponds to - '¢' values

Second subscript corresponds to - ‘RAD' values

A v s e w

Third subscript corresponds to - '6' values
Fourth subscript corresponds to - 'DIS' values

Fifth subscript corresponds to - end moment values M.
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gtz Figure 10. Initial and final position of load defined by ¢, RAD, e and
e DIS with respect to the origin.
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Now it is shown in Figure 11 for each '¢' we have one or more
corresponding 'RAD' values. Similarly for each 'RAD' we have one or more
corresponding '6' values and for each '6' we have one or more corresponding
‘DIS' values. Finally for each 'DIS' we have the corresponding end moment
values for each element of the robotic arm.

Therefore given an initial load position (xj, yj) and a final load
position (xf, yf), using Equations (20) to (23) we-can evaluate ¢g, RADg, O¢
and DISe (where subscript e signifies the evaluated parameters for which we
wish to find best guess end moment values).

We can now search through the array D(I,J,K,L,N). First, we compare

‘¢’ with all the '¢' values in the array and choose the one which is closest

to '¢e' value. Let the chosen value be '¢c'.
Next we search through all the 'RAD' values, corresponding to '¢c¢',
value, and find the 'RAD' value closest to 'RADg' value. Let this chosen

value be 'RAD¢'.

P ST Iy

After this we search through all the '6' values, corresponding to
'RAD¢' value, and find the '6' value closest to '6g' value. Let this chosen
value be '6¢',

Similarly we search through all the 'DIS', corresponding to ‘6’

value, and find the 'DIS' value closest to 'DISg' value. Let this chosen

£ 1 .1

value be 'DIS.'.

.

..‘: S -
ﬂ The end moment values corresponding to 'DISc', will be our initial :

i
o guess moment values for the iterative procedure. This strategy of choosing "
Y \
¥ the dguess values is seen to work reasonably well, K
8

5
|
|

At the end of the iterative procedure, the program computes the exact

end moments required to move the load from position (xj,y;) to position

(xf,yf),




M, (DIS, (8, (RAD, (4))))
l—n,(nxs1 (‘ol(m\n1 (¢y))))

ad

-— - m— - -

DIS, (0, (RAD, (¢,)))
: an(nxsl(ox(ml(ol))))

'1“‘“’1“1’ (nzsz(ox(mﬁ(cj))))
|
"”z('x(mx“;” : )
DIS4(9, (RAD, (4,))) :
0, (RAD, (¢,) J
2
omsz“1‘m1(‘x)m

[0, (01

15, (8, (R, (4,)))
4 hame
05(RAD, (8))

*——mz(oz

¢, (3D, (0))
036,

’2—-

e A

Figure 11. Data structure imnlementation.
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The program now updates its data structure (Array O(I,J,K,L,N)) and
¢e, RADg, 8o and DISe are inserted into the data structure in the proper
places. As the array has all the values in increasing order of magnitude,
insertion into the array is not difficult. The exact end moments computed by
the program during the iterative procedure are also inserted into the array
corresponding to ¢g, RADe, 8¢ and DISg.

After the program has been run for several different, initial to final
load positions, the data structure D(I,J,K,L,N), after being repeatedly up-
dated becomes sufficiently diverse. Now for a varied range of initial to
final load positions, the guess values obtained will be sufficiently accur-
ate.

The data structure is implemented by having a datafile. Everytime the
program is run the values for array D(I,J,K,L,N) are read in from this data-
file. At the end of the program, after the array 0(I,J,K,L,N) has been up-
dated, we overwrite the datafile with the present values of array
v(I,J,K,L,N). In this way the updated database is available for the next run
of the program.

If the program has been run repeatedly which leads to the data
structure becoming very large, the searching time may be too long. To avoid
this, we can easily edit the datafile and remove the values in the range which
are seldom used and leave only those values which are repeatedly used. Also
after the datafile has reached an optimum size and we wish not to expand the

datafile anymore, all that is required is to remove the ‘'write to datafile

commands' from the program.




NUMERICAL EXAMPLES AND DISCUSSION

The program TYPEL, listed in Appendix B, carries out the single
element computations discussed previously. For a prescribed end moment, the
end deflections, radius of curvature and position of the neutral axis of the
deflected element are computed. This program calls the IMSL subroutine DCADRE

repeatedly to carry out numerical integration.

The variable list is as follows:

1) A1,B2,N

Material constants for nonlinear material, stress strain
relationship o = Ale + B2el/N
2) Bl

{]
o
]

Breadth of shim
3) E = Young's modulus of steel shim or reinforcement
4) H = Thickness of shim

5) Hl

]

P 4
—
[}

Distance between neutral axis and point of connection
between shim and tubular element

6) HDIS = 8 = Horizontal end deflection of element

7) L = Length of an element

8) Rl

"
P

—

n

External radius of cylindrical element

9) R2 = Internal radius of cylindrical element

[
o

N

n

10) RHO = » Radius of curvature of deflected element

11) VIS = §,

Vertical end deflection of the element
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5: For an element such as shown in Figures 1 and 2, made of a polymeric

; material with a thin steel shim, the following numerical values were chosen as .
; input parameters. 1
;:s N = 0.2 (dimensionless) f
?. Al = 20.0 psi \
§ B2 = 50.0 psi X
.. R1 = 0.525 inches l‘
. R2 = 0.475 inches y
:%f H = 0.015 inches %
53 L =2.0 inches é
a Bl = 0.5 inches

? M = 3.80 b in. t
E = 3.0 x 107 psi ‘
j&; The results of the computations are as follows. :
‘“ HL = 0.00749 inches ¢
L RHO = 1.549 inches »
“. VOIS = 1.121 inches “
i' HDIS = 0.511 inches %
ﬂ; It is noted that the position of the neutral axis (Hl) is nearly at the E
'J% midheight of the steel shim. Further, the vertical deflection at the end of

:iﬁ the element is about one-half the element length. In this case the internal

;?é pressure p required to produce the chosen end moment M, in terms of the .
gi symbols of Figure 2, is }
E-ﬁ p=— x = 5 380 = 10.1 psi .
bl R, (R1 + Hl) 7(0.475)°(C.525 + 0.00749) h
$; Note: The remaininy variables in the program hold intermediate values and are R
wx of no significance to the user, :

>




The program LEARN, listed in Appendix B, carries out the computations
discussed in Chapters IIIl and IV. It evaluates the end moments required in
each of the elements to shift the load from one position to another.

This proyram can handle many different options. An element in the arm
may or may not be pressurized. The elements can be of varying geometry and
the shim can be at top or at the underside of the element. These options
allow a great varjation in the motion of the arm.

Now, as previously discussed, in this program given an applied end
moment on an element, it was required to know the end deflections and radius
of curvature of the deflected element. To compute the end deflections and
radius of curvature the previously discussed program TYPEL is required. As
program LEARN goes through an iterative procedure, it would be required to run
program TYPEL repeatedly. This could be extremely time consuming and
expensive. Instead we input into the program a two dimensional array A(I,J).
This array consists of different end moment values with their corresponding
end deflections, radius of curvature, position of neutral axis, length of the
element and external radius of the turbular part of the element.

The program ‘LEARN' given an end moment value MI, searches through
array A(I,J) and finds the two moment values (MA & MB) between which MI Tlies.
It then linearly interpolates between MA & MB to evaluate the end deflections,
radius of curvature and position of neutral axis corresponding to MI. This

explanation will become clear by looking through the sample A(I,J) input.
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3 The variable 1ist is as follows.

(X

:i} 1) A(I,Jd) = Array which has for different end moment values, the
EEQ corresponding end deflections, radius of curvature,
‘; Tength of element, position of neutral axis and the
‘E§§ external radius of element

'2% 2) ANG = End cumulative rotation up to that element in degrees
:< 3) Db(I,J,K,L,M) = Holds the 'apparent knowledge' data structure

‘EE 4) H = Thickness of shim

é§§ 5) H1 = Distance between neutral axis and point of connection
oy between shim and turbular part

‘ii 6) HDIS = Horizontal end deflection of a particular element

é}i 7) IDIR = Contains the IMOT value of previous element

- 8) IMOT = -3 means element deflects upwards

f§§ =  +3 means element deflects downwards

if§f 9) INCK = to fix position of global x axis

‘3 10) IP1 = +2 means element is pressurized

ﬁ;ﬁ = -2 means element is not pressurized

i(ﬁ 11) 1IPCK = 0 means no pressurized elements in the arm up till now
 ;i = 1 means pressurized element has been encountered

Z;? 12) IPLT1 = -1 means shim on right side

aii = +1 means shim on left side

j;j. 13) ITYPE = 1 means use array A(I,J)

Lfi = 2 means use array B(I,J)

%ﬁ 14) LN =  Length of an element

_;; 15) N = Number of identical elements (geometrical and material
i}; properties identical and also same end moments)

.
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L 16) NN = number of elements in the arm |
E 17) NSHIF = shift in position of neutral axis between consecutive '
; elements
18) N = number of elements with shim on top |
19) MM = number of data sets in A(I,J), I=1 to MM !
20) R1 = outer radius of cylindrical part |
21) RHO = radius of curvature of the neutral axis of an element
22) RL = radius of load
23) SI = cumulative end rotation
24) VDIS = vertical end deflection of a particular element
25) Wl = weight of load
26) X2,Y2 = end point, values for the current element w.r.t. neutral
axis
27) X3,Y3 = end point, values for the current element w.r.t. mid
axis of element
28) XB,YB = coordinates of c.g. of load at end of each iteration
29) XI,YI = coordinates of c.g. of load in its initial rest
position
30) XF,YF = coordinates of c.g. of load in the final desired
position

31) XORD(I),YORD(I)= coordinates of end points of the elements
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Typical numerical results were obtained for line of ten identical
elements such as shown in Figure 4(a) with all the elements unpressurized.
The requirement is to 1ift a 2 1b 1oad (w}; = 2) from position (XI, YI) =
(-2.082, -14.0) as shown in Figure 4(b), to position (XF, YF) = (8.5, -8.0) as

shown in Figure 6(a). (These figures are not to scale.) The input data is as

follows.
NN = 10
MM = 10
NU = 5
RL = 1.542 inch
Wl = 2 1bs
H = 0.015 inch
XI = -2.082 inch
YI = -14.00 inch
XF = 8.5 inch ‘
YF = -8.0 inch ]
The chosen dimensions of the five subscripts of array D(I,J,K,L,M) g
are: :
I=1toN2 = 3 ]
J=1toM = &4
K=1toN = 4
L=1toM = 4
M=1toM =13

The last dimension in each subscript holds a dummy value (-1000.0), so that
during the search procedure the entire sparse matrix need not be searched.

The overall dimensions were chosen to suit the sample problem and not waste

memory space.
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I =1 to NN

Specific data about each element has to be provided to the program.
For example, IPLTl specifies position of shim, IPl specifies whether the
element is to be internally pressurized or not.

the properties of all ten elements in this example problem.

I TYPE (I)

IP1(I)

+2
+2
+2
+2
+2
+2
+2
+2
+2
+2

---------

RS

The following table specifies

in this example
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For elements having similar geometry and stiffness properties, we can
repeatedly run program TYPEL to obtain the results tabulated below. Now
during the iterative procedure in program LEARN, given the end moment value,
we can by interpolation of the array A(I,J) obtain the corresponding end

deflections, radius of curvature and the other items in the table below.

Array A(I,Jd) I=1¢to1l0
J=1¢t7
End Radius of Length of Radius of
Moment  Curvature Hl HDIS VDIS Element LN Element Rl
(1b=in) p (in) (in) (in) (in) (in) (in)
1.02 5.3979 0.749255x10-2  (.,0455 0.3663 2.0 0.525
1.265 4,3537 0.749259x10-2  0.0696 0.4514 2.0 0.525
1.705 3.2391 0.749247x10-2  0.1247 0.5981 2.0 0.525
1.915 2.8904 0.74924x10-2 0.1558 0.6648 2.0 0.525
2.2799 2.4409 0.749228x10-2  0.2164 0.7745 2.0 0.525
S 2.4085 2.3165 0.749221x10-2  0.2394 0.8111 2.0 0.525
8 2.634 2.130 0.7492x10-2 0.2812 0.8702 2.0 0.525
3.159 1.807 0.74916x10-2 0.3839 0.9982 2.0 0.525
3.798 1.549 0.7491x10-2 0.5109 1.121 2.0 0.525
4,587 1.346 0.7489x10-2 0.6592 1.232 2.0 0.525
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The numerical results are summarized as follows.

Element No. Total End Moment Element
to be Applied (1b in) Pressure (psi)

1 0.181 x 102 262.33
2 0.173 x 102 214.38
3 0.149 x 102 168.54
4 0.114 x 102 129.06
5 0.721 x 101 98.86
6 0.133 x 101 79.76
7 0.502 x 101 76.24
8 0.792 x 101 62.94
9 0.792 x 10l 41.96
10 0.792 x 10} 20.98

It is to be noted that elements 8, 9 and 10 have identical end
moments. As the exact load distribution is not known, these elements are
over-pressurized so that they coil around and grip the load more tightly than
is required for lifting. The pressure pj in the i-th element whose end moment
is Mj was calculated from the following recursion relationships.

Mi = (pj = Pi+1)TR2Z(R1 + Hy)
It is observed that the pressures in the respective elements are higher for
the ones closer to the support.

The elements in the sample problem were identical but if the arm
consists of elements such that the cross-sectional area of elements decreases
successively as they move away from the support (element 1 is attached to the

support) then there would be no drastic decrease in pressure between

successive elements.
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There are several possible extensions of this research. For instance,
the proygramminy efficiency can be considerably improved if the program is
rewritten in Pascal which offers the facility of tree type of data structure
and dynamic storage. By implementing a tree type of datastructure searching
and insertion of data is yreatly simplified. Also, the mathematical model for
plane motion as discussed here can be generalized to include out-of-plane
manipulations. This can be done by the addition of torsion elements [6] at
the base of element one. One torsion element can move the arm *180° out of
the plane whereas another torsion element can move the arm +90° in the plane.
By judiciously pressurizing these torsion elements, the robotic arm can have a

work space consisting of volume of revolutions in each of the four quadrants.
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IIT. LINEAR ANALYSIS OF UNIFORMLY STRESSED,
ORTHOTROPIC CYLINDRICAL SHELLS

ABSTRACT

Within the framework of classical elasticity, the nonbuckled deformations
are calculated for orthotropic, right circular, thin-walled cylinders under
uniform load conditions. The principal direction of orthotropy follows
parallel constant angle helices. Nondimensional system parameters involving
four material constants and three loading conditions (internal pressure,
longitudinal load and pure torque) are identified. Through parametric studies
deformation patterns are calculated that are unique to orthotropy. Numerical
examples illustrate that the proper selection of cylinder orthotropy can lead
to designs with optimal deformations or load-carrying capacity. Results may

be used for the design of robotic actuators driven by internal pressure.
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INTRODUCTION

Improvement in the mechanical performance of cylindrical or nearly
cylindrical shell-type structures may be achieved by adding reinforcement or
by making small modifications in the basic structural geometry. For instance,
the high pressure capacity of fire hoses is due to the reinforcing effect of
the helical fibers in the rubber walls. In other cases, the buckling
resistance to longitudinal loading of thin-walled cylindrical columns can be
greatly improved by the use of a fluted design, or a periodic variation of the
radius around the circumference. On the other hand, there are cases where
high deformations are desirable as, for instance, in cylindrical bellows used
as pipeline expansion joints. Here, length changes of up to 100 percent may
be achieved by the use of axisymmetric, periodic corrugations along the length
of a basic cylindrical shape [1]. Thus, the most flexible directions of the
bellows and the thin-walled fluted column are orthogonal.

The purpose of this paper is to present a unified continuum model of such
thin-walled, cylindrical shells using directional material properties. Such
continuum models are especially efficient for calculating overall, nonbuck-
1ing, elastic deformations for fiber-reinforced cylinders [2] and for uniform-
ly loaded, anisotropic, cylindrical shells [3,4]. In the present study,
classical elasticity is employed to predict the nonbuckled deformations for
uniform, orthotropic right circular cylinders with thin walls, subjected to
three types of uniform loads: a torque T effecting rotation about the longi-
tudinal axis, a longitudinal load P, an& an internal pressure p. Strains
along the geometric axes of symmetry are presented as functions of nondimen-
sional system parameters involving these loads (applied separately and in com-
bination), the cylinder geometry, four material properties, and the constant

helix angle 6, that defines the direction of maximum stiffness. See Figure 1.
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53 Figure 1 Definition of the orthotropic cylinder
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This continuum model may describe the overall deformation characteristics of
fiber-reinforced tubes as well as tubes with corrugations at arbitrary helix
angles, as long as the cylindrical shape is maintained under load. Results
may be used in future designs of robotic actuators that twist (40° < 6, < 80°)
or that only lengthen as for bellows (8, = 0) when subjected to internal

pressure,
CONSTITUTIVE RELATIONSHIPS

Following the development in [5], the constitutive law for an ortho-
tropic, elastic solid that relates the six strain components to the six stress

components is given by

[ 1 B v v 0 7
1 21 Va1
€ - - 0 0 0 o
11 R Pl o 11
v \YJ
12 1 V3
¢ - - 0 0 0 o
22 By B Ei3 22
v v
13 V23 1
€ - - 0 0 0 c
33 T, §, I 33
= ) (1)
Y 0 0 0 =— 0 0 o
12 5, 12
13
Y 0 0o o0 0 0 = |]o
23 s 23
-
b b - e <l

Equation (1) is written with respect to the principal axis (1,2,3). The 6x6
material matrix, whose elements are designated as a;jj, is determined by

experiments. The strains and stresses of Equation (1) are redefined using

single subscription, or
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. (2a)
n 611 =9 , 92 =02 , 033 =03
53% (2b)
°12=9% » °3%9% , 923 %9
i.‘ Using this notation, Equations (1) become
3
o Z a (3)
A j=1 ij%
Ko Recognizing that the total elastic energy for the orthotropic solid is
-Eg invariant with respect to the coordinate system, the elements a;_ of the
W% j
o] material matrix in the (r,06,z) coordinate system can be written in terms of
?;E aj of the (1,2,3) coordinate system. That is
>
2% . % % ()
1N a. = 2mn 9mi 9nj
{J 1J  m=1 n=1 J
gy i,d = 1,2,...6
g§; where qjj represents the direction cosihes of the (1,2,3) system with the
>
" (r,0,2z) coordinate system. As shown in Figure 1, the relationship is simply
}
f}ﬁ one of rotation of the (1,2) axis to the (6,z) axis by an angle of -6, in the
sale
ﬁﬂ: plane r = constant. The values of qjj for this rotation are listed in Table
U
e 1.
:{;- In the transformed coordinate system, the constitutive law is
i L6
T e = ] a_ o, (5)
o T =1 13
"3 which is expressed in cylindrical coordinates as follows.
1
W
%
.’(
). '
AR
o
a3
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For the types of uniform loading considered here, the shear stresses og, and

oz May be approximated as zero, an assumption consistent with the elastic

theory of thin-walled cylinders [6].

From Equation (6), the remaining

stress-strain relations are thus

The elements a:
13
from Equation (4) with ajj and 94 j given. by Equation (1

respectively. The results are as follows*.

*Note that ¢ in reference [5] is interpreted as -8,

EB% -(17). Also, Equation (9) reflects a correction of the results reported in ‘
)
72
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€50 1 %12 213 ¥ %se
c ] (] [] 1
2z 831 2 %3 3 922
= (7)
€ a. a. a. a. o
rr 31 32 33 36 re
] ' [ ]
LYez %1 %2 %3 s %2

. of the material matrix of Equation (7) are calculated

} and Table 1,

in Equations




Table 1. Elements of qjj for axis rotation

J 1 2 3 4 5 6
i
1 cosZe, sinZe, 0 0 0 sin2e,
2 0 0 0 0 0 -sin26,
3 0 0 1 0 0 0
4 0 0 0 cosfy -sinf, 0
5 0 0 0 sinb cosb, 0
6 - %— s1‘n2€>0 % S'inzeo 0 0 0 coszeo
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a,, ==—¢€0S 6+ (7 - )sin"@ cos™®_ + =— sin 6 (8) .
11 Ell 0 612 E11 0 0 E22 0 -
a. - sin49 + (—l- - 2le)sinze cosze +-—l— cosae (9) ;
22 E11 0 612 E11 o 0 E22 0 ;
: 1 ;
Ann = T (10)
33 E33
al, = a,, = ( 1, 1, 2v12 - )sin26 cosze ;.:lg (11)
12 21 E11 E22 E11 G12 0 o E11
' - Y23 2 Y31 . 2 :
d,0 % @a, = == COS O - =—— sin © (12) -
23 32 E22 0 E33 0 :~.
Vo V3 .2, Va1 2 ‘
@y = Anqy = == sin"6_ -=——cos O (13)
13 31 E22 0 E33 0
8v
' 4 4 12 4 . 2 2 1
ac. = + + - )sin“6 cos 6 + =— (14) :
66 B B B Sy Y. :
2v A
' ' 2 2 2 , 2 1 12
A1 = agq = [ cos“8, - sine_ - ( - )e J
16 ~ %61~ M) 0 "y o G, T ]
-(cosze - sin2e )]sin®_cose (15) P
( () 0 o
dop = dpn = [ 2 ginZe - o2 cosle  + ( 1 2v12)' 5
26 %62~ TE;) 7T o T By 0" 6, "E, ]
-(cosze - sinze )]sin8 _cos® (16)
0 0 0 o
-2V 2v
' ' 31 23, .
A, ® Ay = (= + —)sin6 cos6 (17)
36 63 E33 Eoo () o
EVALUATION OF MATERIAL CONSTANTS A
There are seven material constants that appear in Equations (8)-(17), ;

namely E11, Ezz, E33, V12, V23, V31 and Gyp.
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these constants are related to each other and then to devise meaningful tests
to measure them. To insure that the strain energy is a single valued function
of the strain displacements, the material matrix of Equation (1) must be

symmetric. That is

E11 v21 = E22 V12 (18)
Ez2 v32 = E33 v23 (19)
E33 v13 = 11 v31 (20)

Consider a tensile test for which the specimen's longitudinal axis
coincides with the longitudinal or z-axis of an orthotropic cylinder, given
that 6, = 90 deg. For a uniform, applied stress Ezz where ggg = on. = 0g, = 0,

it follows from Equations (7)-(20) that the strains are

\Y \Y
C V1. . Va-
€o0 = f;; 22 |77 922 (21)
g S (22)
zz " E,, %zz
11

v v

rr E23 %22 £l %22 (23)

Equation (22) shows that Ej; is the equivalent of Young's modulus along the 1
axis. Now suppose that for 6, = 90 deg the orthotropic tube corresponds to a
fluted, thin-walled cylindrical column of a homogeneous, isotropic materia1
with Young's modulus E and Poisson's ratio v. This fluted column test specimen
thus exhibits the same stress-strain behavior of the isotropic material in both
the 1 (or z) direction and in the 3 (or.r) direction. The following
definitions of the orthotropic constants are consistent with Equations
(21)-(23).

E = E]] = E33 (24)

v =v3) ® Vi3 ® V) (25)
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Consider a second tensile test for which the specimen's longitudinal axis
again corresponds with the z-axis of an orthotropic cylinder, but now let 6, =
0 deg. Again, the only nonzero stress is the applied, uniform tensile stress

0,5+ It follows from Equations (7)-(20), (24) and (25) that

v - V21 -

€80 = "TF %z = T %22 (26)
22

1 -
€ = e— g (27)
2z E22 zZ

v \Y

e T R

rr T " I;E %2 =~ F %22 (28)

Observing Equation (27), it is seen that the modulus of elasticity in the 2 (or

z) direction is Ep2. Now let
El

E (29)

22
21 = V23 (30)

which define respectively the effective Young's modulus and Poisson's ratio for

\Y \Y

a bellows, consistent with the assumption that ogg = o, in this tensile test.
It follows, using Equations (24), (25), (29), (30), that Equations (18)-(20)
are satisfied if
V= Vi, Ev' = E'v (31)

In a third test, a pure shear stress og, is applied to an orthotropic
cylinder for which 645 = 0. This corresponds to the application of a pure
torque that rotates a bellows about its longitudinal axis. As for the previous
two tests, the cylinder is orthotropic only because of its corrugations, since
it is constructed of an isotropic material with elastic constants E, v and

shear modulus G. Torsion tests on such a bellows have shown that [8]

_ 62

Yoz =5 (32)

which indicates that the rotation and shearing stress are those predicted by

76

- . AT O U I LT St e
: ' . . X R TS -.u-.'\:\":' '{'0\:_\ R
i - - - >

NMEPE T YL AL P, v




the theory of thin-walled tubes without corrugations. When Equation (32) is
compared with the stress-strain law given by Equations (7)-(17) in this case,
it is seen that
G = G612 (33)

In summary, there are four independent material constants needed to
describe the stress-strain behavior of a cylinder with corrugated walls made of
an isotropic material, but modeled as an orthotropic, smooth-walled tube. The
stiffest direction (modulus E) follows the corrugation lines forming constant
angle helices. Orthogonal to the helices is the weakest direction (modulus
E'). The independent material constants are E, E', G and v. Given unifofm
stresses 0gg, Oz7» Opp» and ogy, the uniform strains are calculated from
Equation (7). Using Equations (24), (25), (29-31) and (33), Equations (8)-(17)

give the elements of the material matrix as follows.

ail ='% cos46o + 6% - %z)sinzeocoszeo +-%T s1'n4e0 (34)
aéz =-% sin4eo + Qé - -E--\i)sinzeocoszeo +-%r cos4eo (35)
a3 = ¢ (36)
aiz = aél = (-é— + %r + _E2_y_ - %;-)sinzeocosze0 - "Ei (37)
3% 3 " - F (38)
a3 723 - (39)
aés = (% + %r + ? - %)sinzeocbszeo + % (40)
216 * aél * ["ér Sinzeo +'§ c°5290 - (é" §2)°

'(coszeo - sin8,)]sinb,cos8, (41)
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226 ~ iéz = [- %r'coszeo + é-sinzeo + (é.- é!).
*(cosZe, - sinzeo)]sineocoseo (42)
' ]
336 = 33 = 0 (43)

These results can be used to calculate the strains, displacements and rotations

of the cylinder for the special cases of loading discussed below.
EQUILIBRIUM AND COMPATIBILITY

As shown in Figure 1, the thin-walled cylinder is subjected to three types
of uniform loads: an internal pressure p, a longitudinal load P centered on
the z-axis, and a pure torque T causing rotation about the z-axis. Since there
are no boundary or edge constraints, the resulting uniform stresses may be
derived using equilibrium conditions and elementary methods. In terms of the
mean radius Ry and shell thickness t,, which are essentially constant during

loading, the stresses are:

PRO
g £ e (44)
06 to
pR
P 0
Opp = + (45)
66 ZnRoto 2t°
T
Opn = (46)
06 2
ZuRoto

Consistent with the thin-wall assumption, the radial stress is negligible, or
orr = 0 [6].

Since these stresses and their corresponding strains, as given by
Equations (7) and (34-43), are all uniform, they are all independent of the
cylindrical coordinates (r;e,z). Thus the 81 St. Venant strain compatibility

conditions are automatically satisfied [7].
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STRAIN-DISPLACEMENT RELATIONS

o
\ The general strain-displacement equations in polar-cylindrical coordinates
given in [7] are simplified as follows to express the condition that there are
, no variations in displacement in the 6 or circumferential direction.
3 o @
5
g ‘ee%-%";ih:i (48)
: 0,
‘:: 22 “ 37 (49)
c. i W, W, i Vg
5 Yoz 37 T8 "% (50)
Here, Un, Ug, and U, are respectively the displacements in the r, 8 and 2
i'-‘; directions.
K. Following a procedure in [3], these relationships can be integrated in
. terms of three functions fy(r,z), f2(z) and f3(z) which are to be determined.
From Equation (47):
R Up = epp + f1(r,2) (51)
? It follows from Equations (48) and (51) that:
: f1(r,z) = r(egg = €pp) (52)
‘;. From the last two equations, then,
¥ Up = I €40 = Rocoo (53)
5: where r = Ry for a thin-walled cylinder.
" From Equation (49):
E Uy = 2 €55 + fp(2) (54)
y where the second function of integration, fz(z), is independent of r since the
'j cylinder wall is very thin and any variations across this thickness have no )
‘E significant effect on the longitudinal deformation. Further, by imposing the
N r
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condition of no rigid body motion, where Uz = 0 at z = 0, and noting that U,

',"- LA XX e
Rk ol i g

can be at most a linear function of z, then it is apparent that fz(z) =0,

¥
'

N Thus Equation (54) thus yields the position £ = z + U, of a material point by
ii: originally at point z measured from one end of the cylinder, or
") ) )
£ =(1+¢,;)2 (55) -
- {
I? The circumferential displacement is obtained by integrating Equation (50) 3
“' and then using Equation (55). That is
_ Ug = & vy + f3(Z) (56) ul
o .
3 Here the function of integration is again independent of r, which is consistent
;} with the thin-wall assumption. By imposing the condition of no rigid body :
’- [
Q rotation where Ug = 0 at z = 0, and noting that Ug can at most be a linear f
gf function in z, it is evident that f3(z) = 0. Thus Up = £ vg,. .
P - -
= b
s In summary, the radial, circumferential and longitudinal displacements are r
| given in terms of the strains, the mean radius, and the z-coordinate only, or 3
N ‘ X
3' It is noted that Ug and U, are the same displacements assumed [2] for the solid
) orthotropic cylinder rotating about the z-axis.
o~
%ﬁ A further displacement of practical interest is the angle of rotation ¢
I
2? for a cross section of the cylinder at the coordinate z. Within the limits of K
) linear theory, ¢ = Ug/R,. Thus, from Equation (57): 3
ﬁ‘ o
[ b4 -
= TR (1+€,,)7, (58)
k34
L ;
— PARAMETRIC STUDIES
N~ 3
%
‘ti A1l of the calculations for the parametric studies that follow are based hy
[\ o
a— on Equation (7), the stresses of Equations (44)-(46), and the elements of the -
L . . . N
I material matrix given by Equations (34)-(43). The specific values of E/G = 3 A
o ¢
""{ ‘\
P 80 ot
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and v = 0.5 were chosen since they are characteristic of the polymeric and

rubber-1ike materials to be used in future applications.

Effects of Loading without Constraint. In the first series of parametric

studies, the separate effects of each loading, p, P and T on the homogeneous

strains vg; and €,, were investigated for an unconstrained cylinder. The goal
was to determine peak strains as a function of the appropriate nondimensional
system parameters.

The three nondimensional parameters involving the shear strain vg, are
defined by the ordinates of Figures 2 through 4, in which the only nonzero load
is p, P and T, respectively. For the isotropic case (E/E' = 1), all three of
these figures show no shear strain variations with the helix angle 6,, a result
that could be anticipated. For p loading only (Figure 2) and for P loading
only (Figure 3) the negative ordinates indicate that vg, is negative, or that
the cylinder "unwinds" because of orthotropy (E/E' > 1). For T loading only
a (Figure 4), the positive ordinate indicates that the cylinder “"winds up" if T
is applied as shown in Figure 1. The interesting result is that the peak value
of each respective shear strain parameter occurs at a distinctly different
value of 85. That is:

Et o Yoz
peak (—r-—o ) occurs for 8, = 53 deg

Et R ¥
peak (—22 ez) occurs for 8 = 30 deg

2
Et R ™Y

occurs for eo = 45 deg

For each load type, there is no shift in these respective values of 8, for

1 < E/E' < 100,

N N A e e e R R o N R L
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Figure 2 Unrestrained twisting due to internal pressure
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Figure 3 Unrestrained twisting due to longitudinal load (left ordinate)
and unrestrained longitudinal strain due to pure torque (right

ordinate)
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Figure 4 Unrestrained twisting due to a pure torque
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SN The three nondimensional parameters involving the longitudinal strain ¢,,
'-h“v
S are defined by the ordinates of Figures 5, 6 and 3 (right ordinate), given that
‘{3 p, P and T are the only nonzero loads, respectively. For the isotropic case
e,
‘§: (E/E' = 1), €57 is zero for two load cases: with the p load as a direct
S
1)
' consequence of choosing v as 0.5, and with the T load as expected from
e
"2 elementary solutions. With orthotropy, the peak values of the longitudinal
,“
{{% strain parameters are as follows:
n
N Et €22
" peak G—?f%r—-q occurs for 8, =0
A [}
b
i Et R
i peak @__JLTQL_ZEQ occurs for eo =0
:_'I 2
1 Et R
5?} peak (——2—g2 zz) occurs for eo = 30 deg
18
- From Figures 5 and 6 it is observed that the values of these parameters are
o only somewhat depressed for 0 < 6, < 15 deg, but that this depression increases
N -
s
1$ - more rapidly as E/E' increases. From Figure 3 (right ordinate) the
::Ij longitudinal strain is seen to be negative, indicating the tendency of the
)
55; orthotropic cylinder to shorten as it winds up under a positive torsion load.
Sl
k] Effects of Radial and End Constraint. While the studies above dealt with
A b .
‘{,; strain behavior for loadings applied one at a time, one can imagine a multitude
3}; of practical cases involving combined loads. Consider now one such case where |
¥:§ an orthotropic cylinder is required to operate in close proximity with other
S mechanical parts. To avoid longitudinal and radial or circumferential
,éﬁ expansions when pressurized, suppose that the unloaded orthotropic cylinder f
1580 i
\1
;: Just fits within the confines of a rigid, closed-end tube. Under loading, |
*‘
‘ﬂﬂ then:
:;- eZZ = Egg ™ 0 (59)
>,
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The confining tube has frictionless walls where its design allows for the

application of a torque T to the orthotropic cylinder. The confining tube does
not inhibit torsion. From Equations (7) and (44-46), the two constraints of

Equation (59) become:

R
' 1 P 0 ' P ) T _
(apt7 ) T+t st a2 "0 (60)
0 0 2rR "t
00
R
' 1 P Ro ' P ' T
(a + = a )__+ a ——— 4 = (61)
11 2 712 to 12 2ﬂrot 16 Z“Rgto

The compatible equation relating the loadings p and T is found by eliminating P

between Equations (60) and (61), or

——3-=21|’\ ) =S (62)

] 1 [} ]
T 212 %12~ 211 %22
] ] [} t
PRy 316 322 ~ 212 32
The pressure-longitudinal load parameter is found by eliminating T between
Equations (60) and (61). In terms of S of Equation (62), this is
a. a.
AR S A S (63)
;EZ a. 2 Al
o 22 22

The results of Equations (62) and (63) are shown in Figures 7 and 8.
Figure 7 shows that the pressure-torque parameter, the inverse of Equation
(62), has a peak value at 6, = 50 deg for all E/E' > 1. For an imposed torque,
this gives the maximum required cylinder pressure for full cylinder
confinement., Figure 8 (the right ordinate) shows that the end load-pressure
parameter defined by Equation (63) is independent of E/E' if that ratio exceeds
unity. For a fixed pressure level p, the compatible end load P always
decreases with 85 to maintain full cylinder confinement. It is noted that the

isotropic cylinder is not shown in Figure 8 (the right ordinate) since the only

88
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b ordinate) for a pressurized and fully confined cylinder

[ 90




I way that full cylinder confinement can be met for E/E' = 1 is that P = p = 0,

. For this latter set of conditions, it is recalled that a nonzero value for T

Y always implies full cylinder confinement; that is, Equation (59) is satisfied.
b
., Using the results of Equations (62) and (63) it is possible to calculate .
2 the helix angle that will minimize the rotation ¢ (minimize Yez) at a given
&
;é pressure level. The conclusion in this case, based on the results of Figure 8,
155 left ordinate, is that 6, = 53 deg will produce a minimum ¢ for all E/E' > 1.
Lt %
Effects of Torsional and End Constraint. Consider now the special case
EA N
5& where the orthotropic cylinder is fully restrained from rotation and also from .
;2? lTongitudinal displacement. That is :
A [
‘ Yoz * €32 = 0 (64)
a}ﬁ With Equations (7) and (34)-(46) these two constraint equations are: i
Vo1 P T
| (2, + 3 "‘22) t * 2 TR Rt a6 73— = O (65)
2%R°t
-t 00
2 (ar, + 4 )R+ + LI 66 l
o a6 * 7 226 T 26 '2—‘ 266 T2 (66)
W 2vR°t
P 00
% By eliminating P between Equations (6S) and (66), the torque-pressure parameter }
\4 A
qu is deduced as:
s
»‘»_7. I al
il . T = 2 16 22 26 12) = S| (67) b
vy b RS a,, - 2, a ]
e 0 22 66 26 "26
oY
1;1 The compatible end load-pressure parameter is found by eliminating T between
- the same two equations. In terms of S' .of Equation (67), this is
w
% 212 1, % )
::: -—2: = 2% (——'— + '2' + - S') (68) :
hly P % 322 322
K- The results of these studies are shown in Figures 9 and 10. For a k
T :
iy constant pressure p and a fixed modulus ratio E/E', it is observed that both ;
)
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e the applied torque T and end load P reach peaks that are highly dependent on

\% the helix angle. For instance, if the orthotropic cylinder were to be used as
5{ an efficient torque-exerting device, we would pick 8, = 60 deg if E/E' = 2, but
%%i would pick 6, = 80 deg if E/E' = 50, However, if this cylinder were to be used
y as a longitudinal or end loading device, we would choose 6o = 62 deg for E/E' = —
;3% 50. These résults are contingent, of course, on the requirement that all

Eg; rotations and longitudinal motions be completely supressed.

‘: There are three observations for this case where 6, = 90 deg and p > 0.
ﬁa‘ First, no end load is required for the longitudinal strain to vanish, which is
?& a direct consequence of having chosen v = 0.5. Second, no torque is required
;f and vgp is automatically zero, a result that agrees with intuition. Third, a
‘§§ straightforward calculation of the circumferential strain reQea1s that egg
-gg reaches its peak value when 6, = 90 deg, for all E/E' > 1.

o | DESIGN EXAMPLES ‘

%af The following examples show the utility of the above parametric studies in
o the design of special purpose configurations. The finite lengfh cylinders are
:ﬁg assumed to be fitted with end caps that have negligible radial stiffness so

Eg; . that homogeneous stresses are maintained throughout. The material and

i geometric properties common to all three design examples discusseq below are as
fﬁi follows.

:-é E=1.5x10 N/m®, E' =1.5x 105 n/m2,

G=5x100 Nm , v=0.5,

& to = 1.5 m , Ry=15m , £y = 50 mm.

;¢; In the first design, 6 = 30 deg and the maximum allowable internal

"” pressure is p = 1.9 x 105 N/m2. What is the maximum torque T that such a

E;E cylinder can exert to loosen a bolt, for instance? With E/E' = 10, the value
Uy

R

N
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of the shear strain-pressure parameter for unconstrained rotation (T = 0) is

given in Figure 2 as -4.87, from which vg; = -0.62 rad. The maximum torque

:3;:: capacity is then the value of T for which vg, = +0.62 rad., corresponding to
ig% complete supression of rotation. With this shear strain and the ordinate of
t. Figure—4;—for whiTh the shear strain-torque parameter is 1.55 at 65 = 30 deg
' and E/E' = 10, the maximum possible torque is thus calculated as T = 2.02 N-m.
2' - For this first design, what is the length chang_e in the cylinder for this

maximum torque condition? From Figure 5, the longitudinal strain-pressure

;‘,;:: parameter is 4.2, for which €,, = 0.53 for unconstrained rotation (T = 0). For
QEQ!
;3;;: fully constrained rotation (vgz = 0) let T = 2,02 N-m. The corresponding value
thC .

of longitudinal strain from the right ordinate of Figure 3 is calculated, or
Y )

' €2z = -0.37. By superposition, the net result is e,, = 0.16, the length change
":’ of the cylinder is U, = 8 mm and the final cylinder length is §& = 58 mm, which
!

are found from Equations (57) and (55) respectively for z = &5 = 50 mm.
i'fc;l '
:;::E In the second design, the maximum allowable internal pressure is again
!J“
a&. P =1.9x 105 N/mz. what value of 6y will produce the maximum end load P? The
WL

. procedure is to allow the cylinder to expand freely in the longitudinal
alt '

4&" direction with a strain €;; compatible with Figure 5; and then for the same 6,
7t gl

i%"' to apply a compressive load P compatible with Figure 6 where this load

T ’

s completely nullifies the previous strain €,;. This is equivalent to finding
0

ig: the value of 8, that maximizes the ratio Yg5/Yg, or the ratio of ordinates of
:J these two respective Figures. In these terms, the peak compressive value of P
N

— is given by

Ll

5“‘0
A p (Ys) RZ = 341 N (69)
PO = p =
R 6 'max ©
A\

- corresponding to 8, = 58 deg.
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,:E:E In the third design, the applied torque and the longitudinal strain are
"“ zero. What value of 8, will produce the maximum cylinder rotation at an

_:s:: arbitrary internal pressure? In this case, vgy is the sum of two components:
;" that due to the internal pressure (Figure 2) and that due to the longitudinal
'{':‘ Toad (Figure 3, left ordinate). In terms of the ordinates Yz and Y3 of these
f respective Figures, as well as the ordinates Yg and Yg, the total shear strain
b reduces to:

" Yy ¥g PR

's"':? . = (- Y —7—) 'E_ (70)
9. ]

: In Equation (70), the value of P was eliminated from Y3 by the multiple Yg/Yg.
”‘ Using a trial and error procedure, the peak value of the bracket term in

ﬂ Equation (70) was calculated as -4.94, for which 6, = 67 deg. If the internal
\’»_ pressure is p = 3.8 x 104 N/mz, then the corresponding shear strain is yvg; =
w -0.125 rad; and the rotational displacement and angle of rotation at z = %,
E calculated from Equations (57) and (58), are Ug = -6.25 mm and ¢ = -0.42 rad,
i?n E respectively.

,‘;‘a.. SUMMARY AND CONCLUSIONS

3 Within the 1imits of linear theory, the deformation behavior of uniformly
e stressed, orthotropic cylindrical shells is described by several nondimensional
; -: parameters involving four independent material constants E, E', G, v, and three
{ loads: internal pressure, longitudinal load and pure torque. It is assumed
- . that buckling is absent and that the cylinder is sufficiently constrained so
'uf that the cylindrical shape is always maintained. As shown in Figure 1, the
:“-3 principal directions of orthotropy follow constant angle helices. The more
' important findings of the parametric studies, unique to this type of

ié::': orthotropy, are summarized as follows.
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1. Longitudinal loading P and/or internal pressure p effects twisting

-
£

.

X
1%

about the longitudinal axis.

'd’
-
~N
.

For P loading only, maximum twisting deformation occurs for an

o

orthotropy angle of 6, = 30 deg; but for p loading only, this occurs

& when 8, = 53 deg.

32 3. For a pure torque T, maximum twisting deformation occurs when 6, = 45 :
& ; )
Ty eqg. }
% ° |
ol 4. A pure torque T produces a change in cylinder length, which is not the

case for isotropic cylinders.

o ‘
%ﬁ 5. The cylindrical strains vg;, €gg and €,, are all amplified for a given ’
§§ set of loads (p, P, T) as the magnitude of the orthotropy increases,

Fj; that is, as E/E' increases, given that the geometry and other material

e constants remain fixed.

:} 6. The maximum longitudinal.strain €z; for P and p loading occurs for 8, E
i = 0; but €,, is maximum for T loading when 6, = 30 deg.

:_% 7. The design examples show that the proper selection of cylinder

;'5 orthotropy (8, and E/E') can lead to optimal deformations or

e/ﬂ load-carrying capacity. Such designs, however, are highly sensitive i
QZ% to both the type of loading and strain constraint conditions . 4
Eil The results of these studies are important to the design of versatile and

#&; efficient pressure-controlled actuators made of rubber-like materials that can ;
g f sustain relatively high strains. Orthotropy may be achieved by corrujyiations of b
a8y the wall. Robotics is a logical field of application for such actuators.
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NOMENCLATURE

E Young's modulus in strong direction of orthotropy

E' Young's modulus in weak direction of orthotropy

Eiq Modulus of elasticity in i direction where i is one of the
orthotropic axes, i = 1,2,3

G Shear modulus of an isotropic material with Young's modulus E

Gij Shear modulus in 1-@ plane, where i and j are orthotropic axes,
(1,§) = 1,2,3, 1 #j

P Longitudinal load

Ro Mean radius of cylinder

T Applied end torque

Yk Value of ordinate for Figure k, k = 2,3,...6

i elastic constants in orthotropic coordinate system

(1,d) = 1,2,...6

35 Elastic constants in cylinder coordinate system
J s
(1.J) = 1’2'0006

f1(r,z) Function of integration

fa2(z), f3(z) Functions of integration

2 Length of cylinder

p Internal pressure A

Q4 Direction.cosine terms relating the (1,2,3) axis to (r,9,z)
axis, (i,J) = 1,2,...6

r,6,z Cylindrical coordinates

to Wall thickness

Up Radial displacement

Uz Longitudinal displacement

Ug Circumferential displacement

13 Longitudinal coordinate of material point where § = 2z at
€2 = 0
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ﬁ‘ Yij Shear strains in i-j plane in orthotropic coordinate system,

:’.'-" (i’i) = 1.2’3’ i # j

}Q Yzr Shear strain in z-r plane

i

'gi Yor Shear strain in 8-r plane

% Yoz Shear strain in 6-z plane

. €4 Strains in orthotropic coordinate system, single index

e notation i=l,...6

L? ef _ Strains in cylinder coordinate system, single index notation %
! L i=1,...6 4
Yy €5j Strains in orthotropic coordinate system, double index E
A notation i = 1,2,3 3
:i’ Epp Strain in radial direction .
t'-‘! ’ .:
- €22 Strain in longitudinal direction 7
:{ {
K €g0 Strain in circumferential direction N
N ¢
-, 8o Angle between strong axis of orthotropy and circumferential N
e direction on cylinder !
ﬁQ v Poisson's ratio of isotropic material with Young's modulus E '
L Vi Ratio of extensional strain in i direction to extensional :

‘o strain in j direction for orthotropic coordinate system,
(i,d) = 1,2,3, 1 #j

b o; Stresses in orthotropic coordinate system, i=1,2,...6 :
D> .
. 0; Stresses in cylinder coordinate system, i = 1,2,...6 .
; » 9% § Stresses in orthotropic coordinate system, (i,j) = 1,2,3 3
S N
- Opp Normal stress in radial direction .
RS -]
S Ogp Shear stress in z-r plane ]
: G2z Normal stress in longitudinal direction :
4 ,1s: "
ﬁﬁ: Sop Shear stress in 6-r plane }
:%5 Ogz Shear stress in 6-z plane :
) Jdge Normal stress in circumferential direction
‘iﬁ ¢ Angle of rotation of cross-section o
o )
5, ;

----------
----------
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APPENDIX A

COMPUTATION OF NEUTRAL AXIS

The iteration steps to compute the position of the neutral axis of the
composite section of an element, given an end moment My, were briefly outlined
in Chapter 2. The iteration steps including various formulae derivations, are
now discussed in detail.

To set up the force equilibrium equation for the composite section it
is needed to integrate over elemental areas across the section. For the

cylindrical part as shown in Figure 2a, the area of elemental steps are as

follows.
area of strip ABCD is 2 App dy
area of strip EFGH is[Ap} dy -[ Ar2 dy,
where
Arl = R12 - (R1 - y + H1)2 (A.1)
Arz = Rp2 - (R - y + Hy)2 (A.2)

The iteration steps are

a. Choose an initial value of H} to fix the position of the neutral
axis.

b. After the neutral axis position is chosen the radius of curvature

p of the deflected element is computed. Due to applied end moment, the part

of the section above the neutral axjs will be in tension, whereas below the

R )

,

AFSE




'r“

:'.' neutral axis the section will be in compression. Refer to Figures 2a dnd 2c.

.",

I( For the linear reinforcement material the stress strain relationship is

» o= Ee (A.3)

b and strain curvature relationship is

]
. e=ylp (A.4) ]
‘" From Equations (A.3) and (A.4) we get

_I

g=Ey/p (A.5)

.

e For the nonlinear synthetic material the stress strain relationship is

= o = Ae + Bel/n (A.6) .
i From Equations (A.4) and (A.6) we get E
i o= AL) + g(yl/n (A.7)

e e p

<. i
‘.‘ Now o
3 F = Force = [ odA (A.8)

::j: A

From Equations (A.5) and (A.8), the compressive force in the lower part of the
reinforcement (below the neutral axis) is

LN X
o 2 \
4

¥ 0 -Eb(H - H ) V)
i Fe [ ELbay - 1 (A.9) 1
Iy H, P 2p h
B 1 :
,- Similarly the tensile force in the upper part of the reinforcement is .
:‘ 2 .
e H EB H :
']:'\‘.' = 1 l = 1 A
o F g ELbdy = —— (A.10)

[ .
.~}_f From Equations (A.7) and (A.8), the tensile force in the cylindrical part is y
e «d
308
1 1 1,1/n
1 F=35 () + 85771 (A.11) y
‘ P .
) where :

o ‘.."d - - 3 o AL
AL AR B IS,
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2Ly

SEse sl
o b 5o W ¥ P &

-

3 Ry -RatH) RytRatH)
AN - -
3 ZA[l{ y/ A dy + '{ e yifR , Aoty
.: 1 1721
th
; ,z:_ 2R1+H1
b + fA, dy] (A.12)
F y .
™ R. +R.+H rl

17271

5 and
K
b Ry Ry H, Ry #R*+H
ey - 1/n 1/n

1 =20 y oy + y U Ry - Ry

- H R, =R,+H

\ 1 17271
;:C: 2R +H

ne +f ' YN dy] (A.13)
5 R, :
“ 1 2

x Y and I are evaluated using numerical integration techniques.
To have force equilibrium we know that the sum of compressive and
tensile forces is equal to zero. Thus from Equations (A.9), (A.10) and (A.11)
13 we get
Sa%N

0N ev(h - )2 ew? n |

) - 2p v o tevt B(3 ) 0
A
s 2 _ -
_‘5» Eb(H 2HH1) 2y ) B(l)l/" :

Y 2p P
ey

1 1
B Eb(HE-2HH, ) - 2 . )— -1
Y 781 3}
2
o 2 n
1. Eb(H"-2HH, ) - 27] Ton

oy P * 2B1
D

o L
el . 28I R

L S (A.14)
Y Eb(H -2HH, ) -2y
=
ud":j

00!
o
R 103
S
,h‘ L

; DO() i A L N T e R A S A
AN """ N "“ 'H M&" \'{.::{M}s. m.\.ml.\':&_ \:; \.:L;J:x_ L,Jm*;l'&ttn.\.s..\:;m,:v.:.b,_ﬂ:...u‘\wﬁ:,)C:.'.;_\z.\,{‘




c. For the computed radius of curvature p and chosen position of
neutral axis the moment of resistance of the section Mc is evaluated.

Moment of resistance = [ oy dA (A.15)
A

Using Equations (A.5) and (A.15) the moment resisted by the reinforcement is

H 0
Mr=f1y2£bdy+f yngd_y
(1] P H,-H P
1
M= (q) (A.16)
r o .
where
o= %E[Hf + (H - H1)3] (A7)

Using Equations (A.7) and (A.15) the moment resisted by the nonlinear

cylindricalipart is

1 1.1
My = () B+ (D) /n, (A.18)
where
R,-R,+H R,+R +H,
1l 21 2 121 2
= 2A A, dy + {/JA, - /A )}
B [r{ Y[Ry o F{-R+Hy/r1 [Aotdy
1 1721
2R, +H
I L2 (A.19)
R1+R2+H1
and
n+l n+l
Ry =R, +H R, +R,+H —_—
1721 n 1721 n
n= 28/ y dy + [ y {/7‘ - /A } dy
A rl R. -R.+H rl re

1 1721

"}Rl*“1 n—:l ] (A.20)
+ y / A dy A.2

Ry#RyHH) "

The total moment resisted by the section

104




From Equations (A.16) and (A.18) we obtain
M= @) ot (D) et YN (A.21)

d. If the following inequality holds for a specified tolerance limit

then the iterations stop. Otherwise a new position of neutral axis is chosen

and steps (b) to (d) are repeated.
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APPENDIX B: PROGRAM LISTINGS

PROGRAM TYPEL

1. // JoB
. S {0 EXEC FIVEG i
s. J7C.SYSiNBD
'y c
- c . . reserse eoste e eszesn eezboresze - eeerses oo ¢
[ REAL®® M1 H. N.BY . M, A1 B2.R1,R2.RHO.RHIN, ALPHA .
7. I1BETA NETA KSITA GAMA M1 M2, U,Z.N1.L .MM, INTGRL,
8. 2€, VOIS . MDIS, CHK O R e
9. READ(,10) N, BT, H, RV RI L, a1, B2 M E
10. 10 FORMAT(FI.1,Fé6.1,F7.4,2F6.3,F4. 1, F5.1,F5.1,E9.2.E9.1)
11, WRITE (3,10) N.B1,H, Rt R2,L,A1,B2,M,E
12. c . .
13. c LODOP TO VARY THE APPLIED MOMENT
14. c
3%, D0 20 1=1.% -
16. WRITE(3,63)1
17, €3 _FORMAT(1IM , ‘1=’ 12)
18. MI=FLOAT(1)*0.2°M
19. 0+0.00056
0. R=0.00001
21. H1=0 . 8eH
22. 70 HisH1-0°H
23. 0=0°0.9%
24 ReR=*(0.95
2s. GO TO 90
26 80 HisM1+R"H
27. 0=0°0.9%
2e. ReR=0.9%
29. 90 IF({H1 .LE. 0.000001) .OR. (M1 .GE. (0.5*H))) GO YO 92
30. NteN
31, ZoINTGRL(M1 R ,R2,N1)
32 2=2.0°2
33 N1s1.0
4. GAMA =INTGRL(M1!,R1.R2,N1)
3s. GAMA=2.0°A1GAMA
6. CH(sDABS(E*B1o(H*H-2 D*H*N1)-2.0GAMA )
37. RHO=((2.0°2*B2)/CHK) *=(N/{1.0~N))
8. ALPHA=E*B 4o (H1**3 O+(H-H1)**3.0)/3.0
FIH N1=0.5 ]
0. SETA=INTGRL (M1 Rt R2,N1)
41, BETA®2.0°A1*8ETA
42, Ni=N/(N+1.0) .
43. NETA=INTGRL(HI R1,R2,N1)
44, _NETA=2.0°B2°NETA
as’ RHIN=1.0/RH0
46. M2eRHIN®ALPHA+RHINTBETA+RHIN®®( 1. 0/N)*NETA
47, UsDABS((M1-M2)/M1) . -
48 . 1IF((U .LE. ©.1) _AND. (U .GE. 0.0)) GO T0 €0
49, WRITE(3.34) M2 M1 M1
30, 34 FORMAT(YH ,‘M2e’ E1S5.7, 'Hi=’ E18.7, 'Mis’ E15 7)
$1. IF(M1 .GT. WM2) GO T0 J0O i
82, GO TO 80 .
83, 6O KSITA=RHIN®*(1.0/N)*NETA
84. MM (M2-KSITA)/(ALPHASRETA)
ss. VD1S=(1.0-DCOS(LoMM) ) /MM
1] HD1SsL=(DSIN(L"MM)) /MM
g7 WRITE(3.29
s8. 29 FORMAT( M ,8X, “M1’', 10X, ‘RHO’,8X, "MOMENT’ ,&X, ‘VDIS’,7X, *HDIS ')
89 . WRITE(3,19) W1, RHO.M2, VDIS,.HOIS

N PN T Sl T I L N,
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o T RETEETETR T IA WRTe LT T ETTe v = i
() bl aidad ol e Rl A e anl ) L n iig e aip uid mie semody oUW ow TYOUYTW

B
R
)
é 4
!‘
kLAY
139!
st
O
t N .q
L)
Sz% T iR FORMAT( TN RE R .
K. €. GZ 10 20
ey €2. . .. . 92 WRITE(3.9S)
Wl €3. <
e ca. c ERROR MESSAGE
§s. c
P_ ‘é_ [1.3 FOQMAT( M, CTHE DATA 1S UNSUTTABLE FOR DESIRED siaué-iuaé..;.., ereveae meesrisausaneress
Rl §7. 20 CONTINUE
oy €. .. S0P
Oy €. END
WL 7. c
A 74, c FUNCTION USED TD. CALL INTEGRATION ROUTINE DCADRE
3. [
_ 73. DOUBLE PRECISION FUNCTION INTGRL(Ht,R1,R2,N1)
N 74, INTEGER 1€ER
P 78" REAL*8 DCADRE ¥, 4 B AENR RER®, ER0OR HT,C1.627C9 Ca W3,
{&5 6. 1R1,R2.P,R3,R4.H2,NY
S 77. COMMON R3, R4 ,N2,P N2
\ 3 8. EXTERNAL F
19. N2eN1
- 80. RI=R1
. 81. REsR2
R e2. H2eH1
W 1 83. RERR=0. 00000000 1
15 04 AERR=0., 000000001
v,i ) 8s. A=H2+0.000000001
15 86, £2R3-R4sH2-0.00000000 1 -
" 87, LI |
' 8. C1sDCADRE(F ,A.B,AERR,RERR, ERROR, 1ER)
89. As§+0. 00000001 1
ARy 90. EeRI+R4+HI -0. 000000001
et L I C2=DCADRE(F ,A,B,AERR,RERR,ERROR, IER)
P 82, P=0.5
[ 83 (XYY
et 94. 8=
a0 95. C3=DCADRE(F .A.8B,AERR ,RERR . ERROR, 1ER)
) 96. Pei.S
e : 97. A=B+0.00000001 1
Wi 98. 8=2°R3+H2-0.00000000%
e 9% Ca=DCADRE(F, 4,8 . AT0R RERP . ERA0A, TER)
Yy, 100. INTGRL=C 1+C2-C3+C4
NN 101, RETURN
R 103" END
R 103, c
K ‘o‘ c OS AN CU SO0 ¢ 40 raw & T Pt o g
108 DOUBLE PRECISION FUNCTION F(Y)
106. REAL*S R3,R4,N2,UNDER1,UNDER2,.M2.Y,P
107, COMMON R3,R4,N2.P H2
108 IF(P .LE. 1.0) 606 76 14
109. UNDER 1= (29R35Y-Y*Y-H2oH2-2°H2"R3+2°Y"H2 ) **0.$
110. Fe(ve=(1.0/N2))*UNDER
119, TR Fo Y ,
112, 14 UNDER2s(RARA42°RI*Y-Y?Y-H2°H2-2"H2"R3I+2°H2°Y-RI*RI)**0. 5
113, Fovee(1.0/N2)"UNDER2
194 17 RETURN
115, END
116 [/G.SYSINDD = e "
(KE 0.2 0.5 0.018070.¥2870.475 270 26.0 80.0 ©.18€02 3.0807
118. /* .
118. ...
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1/ uba . REGION® 1024K

[ ¥ Iy
"~
~m
.
Ll
O
ﬂ
-t
<
0
ﬂ

3

a4

6. c * SUBROUTINE FOR PRINTING RESULYS =
7 c

[ Cc

9

. SUBROUTINE RESULT(81.X3.v3 . RMO, M)~ 7777
10. DIMENSION XORD(25),YORD(25)
. COMMON_ XORD , YORD, X8, VS
12. ANG=180.0/3.1415927°51
13. XS5=sv3
L XSO £ L dont . SO
18’ WRITE(3,95) 'ANG X8, V8 QMO .M -
16. 98 FORMAT( 1M ,*END ROTAT]IONs' E12.4 4X, ‘XCOR=‘_E12.4,4X,
e} (YCOR® * L E12.4,4X, 'RHOw ,E12.4,4X, ‘M’ 12)
& o LS 21 ¥Y
19. XORD(MN )= X5
.20, "mmnmmmn'ORD('N)'Vs
21, RETURN
22. END

[

[ S EECIPAROLR USRS P EAFSESRRERRERRRSI SRS
28. c * SUBROUTINE FOR DATA INTERPOLATION =

c

[

..........‘......'.'..-......".....--

28. SUBROUTINE DTINT(RMI, ITYPE)
2 REAL M1, HOIS LN

30" DIMENSITON 4(20.97.8(26.9).a8126.7)

31, COMMON /BLK1/RHO,H1.HDIS,.VD1IS,LN,R1 .MM A B
32, IF(ITYPE.EQ.1) GO TO 91

33 TF(ITYPE €0.2) GO 16 48

34. 45 DO 98 Is=1 MM

37. 98 CONTINUE
38. ' GO TO 46
3s. 91 DD 99 1s1,.WM
40. DO 99 J=1.7
I e AB(L S )mA(T, J)
42, 99 COnTINUE
43, 46 IF(RM1 _EQ. 0.0) GD 10 a1t
B e D016 121, MM
as 1F(AB(T.Y) " JGE"/RM1) 60 TO 82
48, 16 CONTINUE
BT e IRV D A8 ) e
48 . 18 FORMAT( 1M ,*THE ELEMENT CANNDT SUBSTAIN DESTRED MOMENT ) ™ B
4%, Go 10 93

s2. IIHO'RIF'(IG(! 2)=-AB(K, 2))‘AE(K 2)
B HASRIFS(AB(],3)-AB(K,3))*ABIK, ) e
Sa . HDISaRIF=(aB(]. 4)=AB(K, 4))“!(!( 4y a
sS. VDISeRIF*(AB(]1.95)-AB(K,S))+AB(K,S) F
59, RisAB(1.7) ‘ ) B
se. GO TO 93
.58, .. .41 R8M0sQ.0
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S
‘v
4 " ';(’ . Ht l'C). ()
¥ 61. HDIS=0.0
:: 82 Y0180 .0 e
. €3 LN=AB(1,6)
S 64a. R1=0.0
- N A 3L L
Y 6€. END
™ €7 c
‘ i ‘a c .'.........'...f.._.?.......’.
b .52 o T IN PROGRAW STARTS NOW o " e
ﬂ‘ 10 c SHAPOSOPLDLODP RSP ERDPROERY
i 72, REAL LN, RHO,X2,Y2 VOIS HDIS, 81 aANG, #1 RI, HT HI X3 V3 NERIF
73. DIMENSION XORD(25),YORD(25).Aa(20.7).8(20.7).1TYPE1(5).1P1(20),
it a4 MIPLTA(20),N1(20), IMDT1(20)  RMOM(20) ,RMOM1(20),D(3,4,.4,4,13)
7%, COMMON XORD, YORD,XS,YS
5 76. COMMON /BLK1/RHD . M1 HDIS VDIS.LN.R1 MM A, B
A oI, READ(1,11) NN MM NU RL WY W
o 98" 11 FORMAT(312.3E11.4) T
4@ 79. READ(1,104) XI.VI XF,YF
= .80,  ...104 FORMAT(4E11.4)
. 8. "READ(1,10) (ITYRPET(E)  IPYTCTY IBLT Y (T . N (T ), aMoTa{Ty T ey
Al 82. 10 FORMAT(S1Z)
Y 83, READ(1,12)((A(1,J),.J®1,7) Tuy M)
e 84, 13 FORMAT(TE1C.3)
g 85. READ(1,55) N2,M2,N7 M7 ,MX
- e 86 uﬂmii.fPREATlﬁl‘)mm.,MM"wm.
ol 87. NZ=NN-3
88. 00 26 1I=1,N2
. 89. RMOMIIII®Q. 0 o e,
£l 90. 3€ CONTINUE
g i 91, NZeN2+1
P4 92, ... c e eeeeeeseeeene e e oo e e reeeeeeeeeeeees s seveseereeemn oo sesercn e ees o
2 $3. ¢ -
! 94, c THE D&TA FILE 5 READ INTD THE DATA MATRIX
¥ 95, (<
* P ¢ READ ALL THE PHIY -
I $7. DO 319 1=1,N2 .
45' o8 " READ(40.318) DI, 1. 9.0, %) e s e
oy 99. ‘318 FORMAT(E11.4) ) o T
? ‘ 100. IF(D(I.1.1,9, 1) €0.1000.0) GO TO 320
KT 101. 319 CONTINUE
K 102. ¢
'Ry 103. c READ IN ALL THE ‘RaAD’
= 104, 320 DO 321 l=1,N2
105. IF(D(1.1.1.1,1) ES. 1ooo 0)'Go YO0 334 T
W 106. D2 322 vsI.M2
. Ser. READ(40.333) DI, J.%.9,1)
- 108 . 3235 FORMAT(EY11.4) oo
; 109 . IF(D(1.J.1.1.1).EC 1000.0) GO TO 321
g 190. 322 CONTINUE
‘ 111. 321 CONTINUE
_’"l 112. [
113, ¢ READ ALL THE 'THETA"
o 114, 324 DO 325 1s1.N2
4 115, IF(D(1.9.1,.1,1).EC.1000.0) G2 TO 330
: 116, DO 326 uv2.m2 ) ,
0 117, IF(D(1.J.1.1.1).€E5.1000.0) GC TO 32%
. 118. DO 327 k=2 N7
% 119, READ(4D,328) D(1,u.x,1,1)
b
&
:l

o
—d
o
>

l~|'
3l
AR AR
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W e -
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426" 45 FoRMAT(E13 . 4)
121. IF(D(1.JV.K,1,1).EQ.1000.0) GO TO 326
L332. . 327 CONTINUE :
123. 326 CONTINUE
124. 325 CONTINUE
L . - e e e,
12¢" ¢ READ AL TRE “THEFA - R e
127. c
.28, . ....330 D0 331 I=1.,N2 e i
129. . IF(D(1,4.1,1.,1).80.1000.0) G0 TO 338
130. DO 332 Js=2,M2
131, 1F(D(1,J,1,%,1).€Q.3000.0) O YO 33y =~
33" Db 333 Kia AR R e e
133. IF(D(I.J.K.1,.1).€0.1000.0) GO 10 332
135. READ(40, 335) DU YT
136. 335 FORMAT(E11.4)
BT i JEAD(L . W K L, 1) .EQ.9000.0) GO 70 333
138. 334 CONTINUE :
138. 333 CONTINUE
140. 332 CONTINUE
149 331 CONTINUE

-k

»

w
000

..READ ALL THE ‘MoM: . .

145, . 338 DO 339 1+ N2
388 e, JE (D01,1,9,1,1) Q. 3000.0) GO _TO 348
147, DO 341 Us2, M2
148, 1F (D(1,J,1,1,1).£0.9000.0) GO TO 339
........ 149, DO 342 K=2 N7
151, DO 343 La2.M7
152, IF(D(1,J,K,L,1).£0.1000.0) GO TO 342 i
- 153. 00 344 Ms2 ,Mx o
Sr 184, READ(40,345) D(I,u.K.L;M)
e 155 345 FORMAT(E11.4)
Wit 186" TF(O(T.J.K,L.™) . EQ.100C.6) 60 "To 343
e 157. - 344 CONTINUE
b L1858, 383 CONTINUE
159 342 CONTINUE
160. 321 CONTINUE
m15' e 339, CONTINUE

THE DATAFILE HAS BEEN READ IN

-h

*

u
000

165. 348 REWIND 40
16¢€ . P=0.95
v67. ... E=0.95
168. F=0.95

169. G=0.95%

co.
.~y
o

"'TO EVALUATE MCUR REQUIRED TC GEY THME LOAD FHOM INITIAL
POSITION TO THE FINAL DESIRED POSITION

%28 »

MAIN LOOP BEGINS NOw o o

176.
7. 7

- 178.
[ 179, DO %6 Kxe1,28

"MAYIMUM OF 25 ITERATIONS ARE ALLOWED

-

~

) S
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1807 T 77 IF(KK.NE.1) GO TO 101

: " c
o 182, c _THE_MOMENT 1S APPLIED ON THE LAST THREE ELEMENTS TO INITIALLY
AN 183 ¢ COIL THE aRM ARODUND THE LOAD
N e . D0 102 I1eNZ NN
v O, L PYSRUNURIIINE 152 £ 5. F R
e 186 . RMOM(11)sD(1,2.2,.2.10)
AN 187. 102 CONTINUE
N . -V
N ies. 101 §i=0.0
u’§ 190. X2=0.0
b 191, Y¥2¢0.0
K 2 .. e e e e
:’l“ 193. R3=0.0
! e 398 HBR0.0 e
R 19%. Y4=0.0
196. 1PCK=0
N e YOT e . INCK=O
WAL 98 . MR=0
L 199. NSHIF=0.0
o o200 XORD(1)=0.0
B 201. . YORD(1)=0.0 -
iy 202. c
oy 203, L. e e
204, [ LBOP FOR FINDING THE END COORDINATES AND ROTATIONS OF
1Y 208. B VARIOUS ELEMENTS
K i 207. D0 20 I=1.NN
. 208. ITYPE=ITYPEI(])
'\\i‘ 209 . RMABRMOMUT) oot s ses s e e s e srns o st s s
oy 210. CALL DYINT(RM1,TTVYPE)
el 211. 1F(RM1.EQ.0.0) GO TO 86
232 IPsIP1(Y) oo
Ay 213’ 60 Y0 @7
§}; 214. 86 1P=-2
N e @18 BT IPLISIPLY ML) e s - .t
...-:.'. 216. T NeNA(T)
, 217, IMOT=1MOT (1)
e O L IF(1.E0.1) GO TO 17
a 219. 1F(IDIR.EQ.IMOT) GO TO 17
: 220. 1F(SI.LT.0.0) GC TO 19
S 221. MReMR | _ e
;5‘: T g22. 77 €T THE NUETRAL AXIS 1S SMIFTED ACCORDINGLY
s X 223. 4 .
o . 22e.. _IF(ICIR.E0.-3) GS YO 21
2 225 IF(MR . EQ.1) NSHIFaR3I+HI+R14H1
4 226. X28X2+NSHIF=SIN(S])
o) 227. , | Y2sY24NSHIF*COS(S])
. 228. NSHIF=0.0
L1 229. c
,sj-jl 230. . c _TD CHECX IF PRESSURIZED OR NOT
231 e ,
o 232. 1F(1P .EQ.-2) GO TO 23
Ses 233. X28X2+(LN=-HDIS)*COS{SI)+VDIS*SIN(S])
v 23a. ¥2sv2-(LN-HDIS)*SIN(S]I )eVvD1S*COS(S]) ~
- 23s. S1#S]-LN/RHD
s 236. ~ JF(S1.LY.C.0) GC TO 24
A 237. X3sX2=(R1+M1)*SIN(ST)
.r",(_ﬁ 23e. Y3eY2-(R1+H1)*CCS(ST)
o 3. . .68 70 2%
F.’ o
fody
Ay
e 3"
o
At
6
T - m

»
of

) ) AW
AARNMR S e RPN

BN e N P4 2 LN T A DA AL T

RAXA x4 gu (14



4
.. 38,

H3sHY

X3=sx2+(Riemt)o8iN(-8) T
Y3sY2~-(R1¢MH1)*COS(~S])
Mepe t

"CALL RESULT(ST . x3.¥a amg. M) T

GO 10 20
X2=X2+LN"COS(SI)

 ¥2eY2-LN"SIN(SI1)

O -ong. SO OSO
CALL RESULT(SI,.X3,Y3,RHO,M)
GO T0 20
TWHEN REVERSE CURVATURE MOTION Is IN OPP DIRECTION ™ "
21 IF(MR.EQ.1) NSHIF=RISHISRISHE | e woecoens snestsssreies ©  oesrseersoes o

X3eK2- (RISHD)SGIN(S] ) e
Y3=¥2-(RI+HI)*COS(S51)

X2aX2+NSHIF*SIN(SI)
Y2=Y2-NSHIF*COS(S1)

. NSHIF=0.0

" '§1*S1-LN/RHD

34

« cocescsaneet

"IF(1F.€0.-2) €0 TO 33

_X3"X2-(R1+H1)*SIN(S])
Y3avas(RIeHI)SCOSIST)

¥3s¥2+(R1SHT)*COS(-S])

X2sX2+(LN-HDIS)"COS(SI)+VDIS SIN(SI)
¥Y2=Y2+(LN-HD1S)*SIN(S]1)-VDIS"COS(S1) e eeee anen cmeas e e

IF(SI.LT.0.0) GO YO 24

GO TD 35
XJexX2+(R1+M1)*SIN(=-S1)

oNnn

[aNeNa X

35 Mamet
CALL RESULT(SI.X3.Y3,.RWQ. M)
RI=Ri
H3=H1
e 80 TO 20 e e s
33 x2sx2+LN=€08(S1)

Y2uY2+LN*SIN(S])
X3eX2-(R3I*HI)*SIN(SI)

"y3ey¥2+(RISHI)COSISI) T T

19

.17

00718 Jei N

MMt

 CALL RESULT(SI.X3.Y3.RHO.M)
G0 TO 20

S§le-51
IDIR=IMCTY

70 CHECK 1F TME ELEMENT 1S PRESSURIZED OR NCT

1F(1P .EQ. -2) G3 TO 3O
Ipc“. ’ sessel 8 ves eone

TO CHECK IF THE PLATE 1S AT TOP OR BOTTOM

"1E(1PLT .EQ. -1) GC TO 40

IF(INCK .EQ. O)vesRI+MH1
INCkey

PeMe 4

1F(m _EC. 1) GO TO 39

NSHIFe(R14M1)=(RIeHI)

12

B B B e Ben

Py —

« 4"( ‘, i.
4 .

SR Ao
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HeE T fge ke -NSHIFOSINIST) T

301. Y2sY2-NSHIF*C0S(S1)
%02. 39 X2=X2+(LN-HDIS)*COS(SI)-VDIS*SIN(SI)
303. Y2evY2-(LN-HDIS)*SIN(S1)-VDIS*COS(S])
204 . SleS]+LN/RHO
308, . ... X3"X24(R14H1)°SIN(S])
206 . Yany24(R1I+H1)*COS(S1)-V¥4
207. R3=R1
W308. ¥Ry
208. CALL RESULT(S! X3,Y3,RHO. M)
210. GO TO 1%
R L0 RN, | .ol OO
312" IR CINGK . EQ .G Yde - (R14HY)
313. INCK= 1
3%, ... 1F(M_.EQ. 1) GO TO 49
"8 TTUNSMIFe (R14HY )= (R34MI)
316. X2eX2-NSHIF*SIN(S]I)
23T Y2®Y2*NSHIF2COS(SI)
‘318. 49 X2aX2+(LN-HD1S)*CcOS(SII-VDIS*SIN(ST)
219. Y2=Y2+(LN-HDIS)* st(sx)ovuxs-cos(sx)
320, . S12STSLN/RHD
"321. X3ax2+ (R1eMI)*EIN(ST)
222. Y3ay2-(R1+H1)*C0OS(S])-va
323, .. RITRY :
324. T HIem
325. ‘CALL RESULT(SI.X3.Y3,RHO.M)
.26, Lo LT O
327. ¢
328. ¢ TO CHECK DIRECTION OF MOTION OF STRUCTURE
329. c
T330. 30 TF(IPER T €0. 0V 60 70 €3
331. JF(IMOT .EQ. -3) GO TOD 51
5 L S, - S
333, ¢ THE TRANSFORMATION FOR DOWNWARD TRANSLATION
334. c .
. 335. m“MMMMmmmX?'*2‘L"'C°5(SI),“”mmu.m"hMmmM"“mmmmmmmum,"“”"mﬂmm"mmWHNMhmmmumm
336. Y2a¥2-LN*SIN(SI)
337. X3sX2+ (RI*HI)*SIN(SI)
938, Y3sY2+(RI+MI)CCOS(SI)eYA e,
“33e. MeMe
340. INCK= 1
L, o CALL RESULT(SI X3 Y3 RHO M) e e oo e e
42, . Gs To 18
243. S1 X2=X2+LN"CDS(S])
44 ... Y2sY2+LN*SIN(S])
3458, ¥Iex24 (RISHI)=SIN(ST)
346. Y3ey2- (n:oua)-COS(sx) -va
L 7. MsMe
X 348 INCKe 4
fod 349, CALL RESULT(SI . X3,Y3 . R=C M)
A LIso. S0 TO 15
o 3%, c
?Ei 3%2. c WHEN ELEMENTS IN THE BEGINNING ARE NOT PRESSUR!Z2ED
g 3%3. c
] 354 €3 X2aX2+LN
: 32s. Y2=C.0
558 %6, . wEwey
v 357. INCK= 1
j X3sx2
Y3ry2

113
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P18
]
|'!.'
4
o |
'ﬂ“‘ |
ﬁ?u
:n'v‘.
::? T AL RESULT(ST X3, YA RMO M) T T T
g c 15 CONTINUE
. € LODP FOR IDENTICAL ELEM
323 . 26 Conrite L ELEMENTS 1S COMPLETE =
OO FoE FINDING END COORDINATES FOR ALL TME ELEMENTS
“gngm.angmm JJS COMPLETE = PINATES FOR ALL THE ELEMENTS
327. . eeeeeeeuee e eeeeee < e reeees e
o .3‘:="mumm“mmmunc‘LL P1€S12(20.0.11.0)
e e CaLL ORIGIN(S.0.10.5)
5;? HAS g:tt FACT?H(2 .0.2.0)
V) A e eenerene AX15(-3.0.0.0,23.0,°POSIT
{f* §Z§ ‘chf ix?sza 25950:2 OSITION OF STRUCTURE IN XDIRECTION_‘
&% . -3.0.0.0.20.0.'P -
mgggium e e 0. %08 OSITION OF STRUCTURE IN YDIRECTION_’
) 3rs. 1c;::°:;nsou(z .0.~4.0,0°2,
i) ED ROBOTIC ARM ON INTER ’
A;*: .ug;: ..... ] CALL PLOT(XDAD. YGRD. MY NAL PRESSURIZATION_’.0.0)
-
iy a7e. WRITE(3.84) (RM oty
Yo B OM( 1Y), 1vy=1 NN
y71 mg:? @ 84 FORMAT(1H_,'MOMENT AT PRESENTz',E12.5)
" - T 258 B
P g:;_ g- [ ] .n--..u.--.--n..-.-...o.-...........................;;.._..,
d\ T RS S T EURBENT PETTIBN BF P TBAE W &Y
?$\' 385. c THE rxnaL‘ossx:§o°3§§§¥lo:°f§§'?3 O e
gf% ~m§:§ g T NaL DEsIt EREBY VARY THE MOMENTS
)
L
K IF(XK.EQ.1) G TO
Hex ..389. P1sp es
LEAN 290. Ei=E
A
AR ! ceverreeseegznen G
oW 383" G G1eG .
B e ) 394,
i k 298 g TO EVALUATE THE COORDINATES OF THE CENTER OF THE LOAD
; § ::: BB RS R SHY S EOE (g o o e
g 3 YBaYS+(RLER1+H)*SIN(S])
A 399 T g ::;:E;? .8%) XB,Y8,XF, VF
3 : Ao S " - e o e e
b\ prYH 17¥F=’ £40.3) 2.8.5X.YBS 7RI 6. 8K KT €103, 5K,
ﬁyz ' Y. XD1S2XBexF
| )ﬁ ‘gg. YBIETUBvF e e ereene o remnesonsen
*:ﬁ” “”‘OJ: c IF((ABS(XDIS).LE.1.0).AND. (ABS(YDIS).LE.1.0)) GO 1D 60
By . 408 . T 7, Y o - Lo o eesaiee o
e s g NOW TO CHECK THE CUSRENT POSTION OF LOAD w.R.T FINAL POSITION
3 407. IF({XPIS.LT.0.0).AND
97 . _ .LT.0.0).AND . (YDIS LT.0.0)) GO TO €2
‘cg. i;:(:gIS.LY.0.0).AND (YD1S.G7.0.0)) GO TO :3
..... S0 c (XD1S.GT.0.0).AND.(YD1S.LT.0.0)) GO TO 64
::; i g WHEN LOAD 1§70 THE RIGHT AND WIGHER
413, o N&=NU» 1
::;. NEeNN-3
. P1sP1/(2.0°( (NN-3)=NU
L& . PasPy b
:17. D0 €5 1=NA . NB
18. PMOM( ] )oRMOM( ] )+RMOM( 1 )*D 4

419. PisP1eP2




- —— bodhaak A L g ad ‘n-r‘-r\-v\“|v7“-“!'ﬂl"'~‘“.1:.-".‘"v':'E-T'n-c"‘"‘ﬁ"""'.’""‘“_1’
w

gD 6n CONT 1NUE C .
& 421. P=P-P*0.05
O 422. .. .GD 70 83

i%; 424 . c WHEN LOAD IS TO THE LEFT AND LOWER
i

426.777 7 TTE2 T NCeNye 1 4
427 NDsNN-3 |
A28, . E1sEY/((2.0°(NN-3)-NU)) e e
429 E2=E4 .
430. DO 66 1=NC.ND i
. RMOM(1)eRMOM(])- '"0!9!) BY o, )
E1sE14E2 1
€6 CONTINUE
BB R0 08 e e e e
Go Yo 83

vf, c ’ N

437. €. WHEN THE LOAD 1S TO TME LEFT AND MIGHER

o 438. [~ )
L 439. €3 Fi=F1/(2.0°Nuy) .

% .mmﬁ‘Q:wmmemm”m.'2"‘ 4 i

DO 67 Isi.NU o -

aa2. RMOM( I ) «RMOM(1)-RMOM(1)*F 1

. L PR B et A - S
. B SR A\ S . e e e
aas . FeF-F*0.05

446 G0 _TO 83

-y
,3’
L 3
E
-

WHEN LOAD IS TO THE RIGHT AND LOWER

T L vyl
1h &
‘&

[ ]
000

ea S e e
as1. G2+G1 . ]

- 452, ...D0 68 I=1.NU . O e e e ;

oy 453 RMOM( 1) SRMOM{ 1)+ RMOM (T )*61" )

2 454, G1G1+G2 .

g 455, €8 CONTINUE

: ager e BRCONTINE .
>\ 457. Go To 83

T THE DATA MATRIX iS5 SEARCHED 10 PROVIDE THE GUESS VaLUE =~

\
[ %
o
o

innoin

e ....C . TO EVALUATE PH] . RAD.THETA & DIS FOR THE GIVEN COORDINATES
; 432 65 RAD=(ABS(XI)**2.0-ABS(Y])%+2.0)°+0.8
463. D1Ss((ABS(XF-X1))*"2. O*(ABS(VF-VI))"? 0)**0.8 !
46a. . THETA=ATOS((XxF-X1)/D1S) |
. 4€5. IF(X].LE.0.0) GO 10 3&d
466. PHI=ATAN(X1/ABS(Y]))
467,60 TO 361 e e e OO
468, 360 PHI==-ATAN(X1/Y1) '
THE SEARCHING STARTS NOW )

TO FIND THE CLOSEST PHI
472. 381 1=0
473. . .. 362 Il

AT Y
- ‘r'('ﬁ?’?“, ',' .
L
~ 0
ow
oOn

b - ‘75. Kel-1

s, 476 .  DIFFsABS(PHI-DIK,1,1,1.1))

41w aT17. DIFF2°aBS(D(1.1.1.9.1)-PH?)
A7 - 478. 1F(DIFF.GT. Dxrrz) Go TO 2363
479. 1ok

o s
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* +
<o
A0
.r\'.
L.
e aso. &
Yoy as1. ¢ TO FIND THE CLOSEST RAD
il ..482. 363 J=1 L . - . e e .
A 483 . 364 umy+1 o
AN 484 . 1F(RAD.GT.D(I1,u.1,1,.1)) GC TC 364
2 KL RN . Ao S e e e e i e s e
?}:. 486 . JF((RAD-D(I,L.%.1,1)).67.(D(I,u.1.1,1)-RAD)) GO TC 365 ’
o 487. UL
e BB
N 489 . [ TO FIND THE CLOSEST THETA
490. 365 K= 1
A8, BEE KK e
422 1F(THETA .GT. D(1.U.K.1,1)) G0 TO 366
492 . M=K~ 1
484, o TF((THETA-D(I,JU.M,1,1)).67.(D(1.J,K,1,1)~THETA}) GO TO 367
495 . KeM
496 . c
497, C. TO FIND THE CLOSEST DIS
48§ 367 N=1
) 499. 368 N=N+1
. L9500, . .. . IF(DIS.GT.D(I.J.K,N.1)) GD TO 268 e e oo
ol $01 LeN-1
S 502. IF((DIS-D(1,U.K.L,1)).GT.(D(I,U.K,N,1}-DIS)) GO TO 368
‘-.-'\\ . ..503 e eervrrnaere e ranaaane e N'L
Ay 804 .- ¢
N 505, c TO TRANSFER THME GUESS VALUE ‘MOMENTS’ IN THE MEMBERS TO
« 506 i START THE ITERATIVE PROCEDURE
857 c
508. 363 DO 370 Mis{ NN
D0 e IR e e e
Sl §10. RMOM(M1)eD(T , U.K,N M)
S 511, 370 CONTINUE
- 2. c iteeresienesia s e seriostEseiss  aeies sssmmessia Sieisereeess isies oo« seoistessemsonerssresseeeeeecesseenese e e rereen.
- 13, c THE GUESS MOMENT VALUES HAVE BEEN LOCATED
514. C
515, .83 WRITE(3,57)KK NS5 T v € EEMBLETE Y T e e e
§16. %7 FORMAT(1H ,“ITERATION N& %, §2.° 1§ COMPLETE")
€47, 56 CONTINUE
518 ¢ MAIN LDOP ENDS NOW
51¢ ¢ "THE MCUR HAS BEEN EVALUATED wiTWiIN 25 ITERATIONS
520 c
521, L 2
J 822 WRITE(3.97)
e 523 $7 FORMAT( %M ,*NOT POSSIEBLE TO REACH GODAL IN 25 STEPS‘)
ol s24. . ...G8D YO 72 e e
YR $2S. <
SRR 526, €0 CALL PICS12(0.0.0.0)
S S$27. ¢ . . L ) o e
:'*:‘, 528 C."..-l-'.l-'-..l'..l.-."...--..'..-II..II.ll.';‘..‘..‘;..";l..l.‘.l.-
LA €2 ¢
73’ 539_ c I A A AN R R BB A AN ENRELE FESS N AN R SR RN FEE FEN R F N RN NN RY W R TR T NN
) 531 ¢ * THE DATABASE 1S5 CHECKED &NT THE PRESENT RESULTS ARE .
BRI £32 c = INSERTED IN THE PROPER PLACE IN THE DATABASE IF NEEDED =
"~'_'. 533 c . (B2 N A A EE R E RN R XA NN R FERN SR LR RN E IR SR N R RN N RN NS FERE Y NN N XX NN Y
‘ 'i-‘.j\' 834, o
¢“3 835 DIS®((XB-XI)**2. 0+(YE-Y1)**2.0)*"0 5
5N 53¢  THETASACOS((XB-X1)/DIS _
{» $37. c TO PUT PH] IN PROPER PLACE IF RECQUIRED
Lo £38 . 10
CaM s3¢9 127 1=le9
b3 S3e. 127 1s=]
BL
S
S
4
1.::
Y N.-
s
v: n,"‘

116




PR TR T S T ST BT IS WU WU UE W2 ¢ "BLIW l e T q a1 ¢ . a a0 el e e e e
L

K7

o‘;!“

'] g'v&4

fo

R A

Lo S40. IF(ABS(PHI-D(1.1,1,1,1)).LE.0.00008) 60 To 126~~~ '~~~
o S41. c NO NEED TO INSERT

wad 592 JF(PHIGT.D(1,1,1,1,1)) GO TO 127

A §43. ¢ TO INSERT AND PUSH THE DATA DOWN SUECESSTVELY'

il }" Sa4. IPa]

el S48 . DO 150 Ix1.N2

745. 546. T 7 TF(D(1.1.1,1,1).E0.1000.0) GO TO 151

W, 847. 150 CONTINUE

L TR 1 1 R L3 0 T
- -pan e e g e o ves e oo+ e
R 580. c THE INSERTION AND SHIFTING LOOP STARTS NOW
e L D s -1 @ {9 I PR PR D L1 -1 G5 IG5 O 108 B
1¥5e e DLk, -
5 \ 553. 1=1-1

e 3B, VPSEIP=Y e
' 888 167 IF(1.€0.1P%) GO TO 166

$56. DOIK.9.1,1,.1)eD(1,1,1,1.1)
e H I8 . DO 152 Ju2 M2 —
ey 858 D(Ik,y. 1.1, 1)eD(1.J,1,9,1)" oo
Pt 559. IF(D(1.0,1,1,1).E0.1000.0) GO TO 183
P 380, .52 CONTINGE  ~ =~
SO 861 152 Ju=J-1
oy 562 DO 154 J=2,4y
L 563, .....DO 185 K<2 N7

— w4 T D(IK,.J.K,1,1)8D(1,4.K,¥9.%)

' Ses. 1F(D(1,U.X,1.1).EQ.1000.0) GO TO 156
rid 566, ...\55 CONTINUE .
f 867. B QO IR ™ T o 1 s
AR $68. 1568 KksK=1
o _569. D0 157 J=2.0J

’-v 570 Da 15‘ K'2 ‘K ........................
i $71. DO 159 L=2,M7
B DI VLKL 1)RDAL LKLL))

Yot 573. T R (D(1 .0,k L, 1) (€0, 1000.0) 6676166 e
o 574. 185 CONTINUE

pos o 59¢" 157 CONTINUE
‘~y%‘ 877. 160 LL=L=1
I X1 R . B LS NEVL - X Y S

. 579 D0 162 K=2,kx
- $80. DO 163 L=2,LL
8 81, ... DO 164 LME2 Mx o _

hﬁ* sg2. DI, J. K, L. LM)=D(].J.K . L.LM) ' o
AT $83. IF(D(I,J.K.L.LM).EQC 1000.0) GO TO 165
2%yl 5“ . ............“‘ CONTXNUE .
o) Tses 163 CONTINUE
oy 586 162 CONTINUE
S87. . ... . 16% CONTINUE » _
588 ¢ TO GO UP ONE INDEY aND PUSH DOWN
$89. 165 !F(Ix.EQ.IP) GO TO 166
$90.  IxslKk-t
891. i=1-1
$92. GC 10 167
593, ¢ SHIFTING 1S COMPLETE
$94. 166 D(Ix, 1,1,1,1)epu]

-
"
(]

PN TR -

2
=
.

T
.

== 895 . D(1K.2.1,1,1)eRAD
896 . BUIK,3.1.1,1)s100.0
' 897, 0(IK,2.2.1.1)eTHETA
ARy $98. D(1K,2.3,1.1)s100C ©

f—:—%{’.
e

899.  D(Ix,2.3.2.1)eDIS

s
-

j

G o A
A Ay
e LI

"Seg ,,‘u‘ﬂ AN

i



D(1K,2.2.3.1)¢1000.0
MCesNNe ¢ -
DO 168 1B=2,MC

KK=1B~1
D(IN,2,2,2,IB)*RMOM(KK)

LXEB CONTINUE e e e e e e
MCeMCe 9
D(1K,2,2.2.MC)=1000.0

_.€_ . INSERTION COMPLETE GO TO WRITE FILE AREA

& T0 170 et e e et et e e e .

o0

. _ERROR MESSAGE IF FIRST DIMENSION waS EXCEEDED
160 WRITE(3.171)
171 FORMAT('H ,'THE FIRST DIMENSION WaS EXCEEDED')
.80 TO END OF PROGRAM oo
& 10w — . _— e oo e

onn o

..JF PHI waS NOT INSERTED SEARCH TO SEE IF RAD NEEDS
TO BE INSERTED IN THE DATABASE -
126 Js=1
R T Ll o S
IF(ABS(RAD-D(1.J.1,.9.9)). L€ 0.008) 60 0 475
IF(RAD.GY.D(1.v,1,4,1)) GO TO 174
.EC.. .. TO INSERT RAD =
JPay
D0 175 y=2.M2
e JEAD(T .0, 1,1,1).EQ.1000.0) GO TO 176
17§ CONTINUE
176 UKsJg+ 1
IF(UK.GY.M2) GO TO 177
D{T, UK, 1.1, 4)VeD(1.0.1.7.7)
Ke UK =1
B ok o, SO
s . N
188 IF(J.EQ.UP1) GO YO 187
D(I,Ux.1,9,1)=D(1,J.1,1.1)
DO 178 Ke2.N7 4
DII.UK.K,1,1)=D(1,u.K,1, 1)

"'498 "CONTINUE
179 KK=K=1
6 181 Loz M7 . ) e erusesatees essnevesense 5 oo ees svorneaee + eoeee et
O(l, UK. K, L,1)eD(},.u.&X,.L,1)
L IR(D(T,J.K,L,1) EQ. D00, 0) GO TG 182
181 CONTINUE
180 CONTINUE
1B2 LLe=L-1
' 00 183 K=2 KK
DO 184 Le2,LL
..DO 185 LMe2 My o
D(1.UK, K, L.LM)sD(] V. K.L LM)
IF(D(l.u.X,L.LM) . EQ.1000 0) GO TO 186
185 CONTINUE . e ,
184 CONTINUE c
183 CONTINUE
C GO UP AND PUSH DOWN AGAIN

186 1F(UX.EQ.UP) GO TO 187
meuKeY
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§60. - Jay-1
661. GO 7O 188
662. 187 D(1.ux,.%,1,1)=RAD
663. D(I.UK. 2,1, 1)sTHETA
€64 . D(1.uX,3,1,1)21000.0
665, D(1.Ux.2,2,1)sDIS
€66 . D(1.U%x.2,3,.1)21000.0
667. MC sNN< § .
668. ..DO 189 1B=2 MC
669 . XkelB-1
€70. D(1.UK,2,2,1B)=RMOM(KK )
€72. MCaMC+ 1 '
673. D(1.,Uk,2,.2,MC)=1000.0
€74. ... 80.70 170 it e e e o
€75. c THE SECOND DIMENSION wAS EXCEEDED
€76. 177 WRITE(3.190)
677. . 190 FORMAT( 1M ,‘THE SECOND DIMENSION MAS BEEN EXCEECED')
€78. c GO TO THE END OF PROGRAM WITHOUT REWRITING THE DATAFILE
€78. GO TO 172 .
B0 . e i et ot s« oee s St SRttt £t £ - et e eoeee emoees 11+ oo
681, c IF PHI & RAD WERE NOT INSERTED, CHECK FCR THETA
682. C
683, . 173 ket B
68a. 192 KeK+
68%. IF(ABS(THETA-D(I,J.K, 1,1)).LE.0.00009) GO TOD 191
686. 0 IF(THETA.GT.D(I,v.K,1, 1)) GO 10 192
687. ¢ TO INSERT THETA
688 KP=K
889, DO 193 K=2 N7
6€90. TE(H(T.0.K, 1, 1) . E0.960¢ 6 60 %0 194
691. 183 CONTINUE
882, N0 KKK
€83. TF (& GT . N7) 60 10 1988
€54. D(l.J. K, 1,1)=D(1,4.K,1.1)
A§3§L.mm.mmmmmm““'**°‘.wmnm. .
€96. KaK=1
€97. KP1eKP -1
688, 202 1F(K.EO.XP1) GO TC 201 . e saesesmaeeeesson  eoeesssessrere et eevsesees eete e ree et oo
669. D(I.V.KK,1,.1)eD(2,U.K,1,1)
700. D0 196 L=2 M7
LS TIRE L © ST P LY P B L -1% ST ML Y 0 B R -
7c2. IF(D(I,J.K.L.1).EC.Y000.0) GO TO 197
702. 196 CONTINUE
.J0s8. 187 Lisl-1
708%. Do 198 (=2, LL
706. DD 199 Lwms=2
707. . LDl vk, L, LM!-D(I VoKL LM)
0e. 1F(D(2.u.K.,L.LM) EQ. 1000.0) GO TD 200
709. 199 CONTINUE
710. . 188 CONTINUE e
719 c GO UP AND PUSH DOWN AGLIN
712. 200 IF(XKK.EQ.XP) GO 1O 20
713.  Keket
714, KK sKK- §
AL B GO TO 202
116, 20) D(l.J.KK,1,1)eTHETA
T17. D(I.J.KK,2,1)eDl1S
718. D(l.Uu.XK,3,1)s1000.0
719. MC NN+ 1
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920. D0 272 1B=2.mC
721. M2e=1B-1
J22. S L8 R TLL TR R LY R L =L Q3 SR
723. 292 COMNTINUE
72a. MCoMCe ¢
Jas o P U KK, 2, MC)=1000.0 L B
726 [ INSERTION COMPLETE GO TO WRITE FILE AREA
727 GO TO 170
328, €. THE THIRD DIMENSION HAS BEEN ExCEEDEOD . . .
728. 198 wikITE(3.203)
730 203 FORMAT( 1M ,°*THE THIRD DIMENSION HAS BEEN EXCEEDED)
731, €. GO TO0 END or PROGRAM WITHOUT REWRITING THE DATAFILE
732 GD To 172
733. c :
134, €. . 3F PHI . RAD & THETA WERE NQT INSERTED, CHMECK FOR DIS
738 c
736 191 Lo ]
137 805 LELe 1 eeeeeemmet e eeeree eient oo e+ e
738, 1F(ABS(DI8-D(1.U.K. L, V. (E" o ©0009) 60 T0 237
739. 1F(D1S.GT.D(I,v.X,L,.1)) GO TO 205
Jao L. TO INSERT DIS = = .
741 LPeL -
742 DO 206 Le=2 M7 :
743, . 1F(D(1.J.K.L.1).EC.1000.0) 6 Y0 207 _ -
Jaa 206 CONTINVE
745 207 LKsLe+t
146 o __1F(LK.GT .M7) GD TO 208
747. D(1.Jv. K. (K, 1)eD(1,0,K, L, 1)
748. LKeLK=1
.Jas. LeL-1
7%6. LP1sLP-T
751. 212 IF(L.EQ.LP1) GO TO 2141
752,  D(1,9,K,LK, 1)=D(1, u.K,L.1)
983, DO 208 iLM=2,mx
754 . C(1.J.K, LK. LM)=D(] . J.K L .LM)
s ] . IF(D(1.JU.K,L.LM).EQ.1000.0) GO TO 2
7s6. 208 CONTINUE.
757. c GO UP AND PUSH DOWN AGAIN
7%8. ..210 IF(LK.EQ.LP} GD TO 211
759 LK=LK=1
7€0 L=L-1
761, . ... GO TO 212
Y62’ 211 MCeNN+1
763 DO 213 1B=2.MC
764 M2=JE-1 -
265 C(1.V.%K,LK,IB)sRMIM(MZ)
766 213 CONTINUE
767 MCaMCey . et e oo
7e8. O(1.J.K, LK, MC)21000.C
7€8 c INSERTIGN COMPLETE GC TO WRITE FILE ARFA
770 » G2 T0 170 . .
77 [« THE FOURTHM DIMENSION WwAS EXCEEDED
772 208 WRITE(3.214)
T72 214 FORMAT(1M ,'THL FOURTH DIMENSION HAS BEEN EXCEEDED')
77a ¢ GD TO ENU DF PROGRAM WITHOUT REWRITING DATAFILE
778 G0 TD 172
776 ¢ . o ervvemeenen e
177 I 4
77e. c 70 OVERWRITE THE DATAFILE WITH THE NEV DATA
778 ¢
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o) 780. €7 TTWRITETALL THE ‘PHI® FIRST
"\ 781, c
1% 782. 170 DO 215 1s1,N2 .
B 783. WRITE(40.216) D(I,7.1.3.1)
784. 216 FORMAT(E11.4)
0 785, ... JFED(1.1,1.1.1).€Q.1000.0) GO TO 217
786 215 CONTINUE
787. c
) Je8. C o WRITE ALL THE ‘RAD’
RN 789. ¢ , _
.:. 790. 217 DO 218 Is1,N2
W 791, . IF(D(1,%.1.1,1).€0.1000.0) GO 10 219
‘,'.l' 782. D0 220 \"2 "2
BN 793. WRITE(40,221) D(1.v.1.1,1)
794,  ....221 FORMAT(E11.4) o et v e seeemren s e s e s e
798, 1F(D(1.9.9.4.9).€0.1000.0) 60 76 218
s 796. 220 CONTINUE _
Ja 197, ... .28 CONTINVE . ..
o 798 . ’
J% 799 .
o 801 219 00 222 1=1.N2
e02. 1F(D(1.1,1,1.1).€0.100C.0) GO TO 223
= =B DO 224 J=2 M2 e i s s e
Y 804 . IF(D(1,J.1.1.4).€0.1000.0) G0 70 222
2 805. . D0 225 K=2,N7
B06. . WRITE(40,226) D(I,J.K,3.1) A —— j
. 807. 326 FORMAT(E11.4) ;
AL 808. IF(D(1.J.K.1,1).EQ.%000.0) GO TO 224
I 808, .. 325 CONTINUE
810. 2247 CONTINUE
811. 222 CONTINUE
812,
843"
814,
815. . ...223 0C 228 1=1.N2 i
816. IF(D(1.4.1,1.9).E0.1000.0) GO Y0 229
; 817. OC 230 v=2.M2
; V8 IF(D(TLY,1.1,1).BQ.9000.0) 60 TO 228 s
o 815. 0 231 Ka2.N7 ‘
\ 820. IF(D(1.J.K.1,1).E0.1000.0) GO TO 230 :
o 82s. "WRITE(40,234) D(1.u.k.L.1)
W 223. 234 FORMAT(E14.4)
Y 824.  IFID(I.u.xk,L,1).EQ.1000.0) GO TO 231 = o ;
Wle 825. 233 CONTINUE
8z6. 23¢ CONTINUE
B27. 23D CONTINUE

WRITE ALL THE ‘THETA’

000

TWRITE ALL TWE DTS’

onin

-
s

- 828 228 CONTINUE ) ) ’
~ 829.
3 820.
. 8231,
N 832 229 DO 236 I=1.N2

W 833. 1fF{D(}.1,1,1,1).E0.1000.0) GO TO 237 _
L 834. DO 238 Ue2.M2
ﬁ@k 035, 1F(D(1.v.1,1,1).£0.1000.0) GO YO 236

h 83¢. Do 23¢9 K'i-N7 L R o J
|5. 837. IF(DI(I.V.K.1,1).E0.100C.0) GO TC 238

Wy 823E. D0 241 Le2 M7
*ﬂb 829 . L SF(D(I.J,K,L.1).60.100C.0) GO TO 239

WRITE ALL THE ELEMENT MOWENTS

[a X2 X4l

S T
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o4 E

"B0 0 Jei.NU
70 CONTINUE

NGeNN-3
- D0 T1 J=NF NG

71 CONTINUE

TCEE T

RMOM(J) s RMOM( y)-RM2+w1° (XC-XORD(V))

" RO 3} +RMOM (/) >3 W 15 (€= KBRBTU) )

840. h T DO 242 Ms2 Mx
84, WRITE(40,244) D(I,U.X, L. W)

842, 264 FORMAT(E11.e) e et o
843. IF(D(].u.X.L,.M).EQ.1000.0) GO TO 241 o
g4as. 243 CONTINUE

L8455, .28 CONTINUE
ge6. 239 CONTINUE
0ae7. 238 CONTINUE

.ues. .23€ CONTINUE

bbbkt abiiadal Sk dad Sak dod Dbl o0 48 2.2 i g Bt 218k vl ghatal o]

250. c-'....II..-"I...I..I.....‘.-...-.....I.l.‘-.;oill...;'.-.."I'
OO S
o52. ¢ L T Y T Y Y T T R A N S
833 c * TO CALCULATE THE ADDITIONAL MOMENT DUE TO THE LOAD *
854 LC .....® T0 CALCULATE THE X-COORDINATE OF POINT C ®
8ss . [ L T T T P R T Y R T Y Y T T PR Y Y TR T P o
856. 14
887, ...237 GAMA=ABS(SI-3°LN/RMO)
"RM3sWis (RLoR 1oH)
XCoeXB+(RL*R1+H)"COS(GAMA)
MW (RLERISH)CCOSIGAMA) i e e e e

RMOM( J ) sRMOM( J ) *RM3
eeeeeesreeennn 72 CONT INUE
. WRITE(S.58)  (Rmdd{T ) i1, 80
874. 89 FORMAT( M .’TOTAL MOMENTs . £10.3)

818, arzsTOP .
876. ENo T T ommmmmn e
877. /°

.878.  //G.FT40FOO1 DD DSN=DU DO€.2U2142 UMESH LDATA,DISP=OLD
879. //G.DUKEPLOT DO SYSOUT=C "
880, //G SYSIN DD °*

.98y, 1010 S 0. 1944E+01 ©.28+01 0.11E-~0% e e -

082, =0.*92%18+01 =-0.14E+C2 0.88+01 ~~0.9E+01
' TR 142-1 1-3

 88a. 1e2-1 1-3
e - T T T
806 . 143-1 13
887, a1 13
(TT 142+ 143
889. 122« 149
890. 1421 143
091, T qaze1 1e3
882. 121 143

893, . ©.2Ee02 O.118E+02 O S£-C2 0.101E-01 0.173€+0C 0.2E+Q1 O
89s . ©.288+C2 C T62E~C1 € 499E-02 € 228E-01 ©.26E+00 0.28¢D1 0
88Ss. O 3€+02 O S73E+0% O 4PBE-C2 O 404E-01 0.346E+00 0.2E«01 ©

896, ©.2%E+02 O 4SRE<DY 0 .487E-02 0.630E-O1 0.43E+00 ©0.28-0% ©
897. C 4E+02 O 3828+01 0.496E-02 O 9O1E-01 0. 5126400 0.28+0t 0.
(11 C 498+02 0.3278+0 0 498E-C2 0.123E+00 0.893E«00 O0.2E+01 ©
.99 . C SE+0Z 0.287E+01 O 494£-02 O.158E+00 O.6EFE+00 0.28+01 ¢

122

.8€+00
.5€+00
.SE+00
.8€+00

SE+00

.SE+D0
8134
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$00. O.85E+02 O.255E+01 0.493E-02 0.199E+00 0.745¢+00 0.2E+01 C . 5E+00
901. ©.6E+02 0.229E+01 0.492E-02 0.24%E+Q0 O.£19E+00 C.2E+0O1 O.5E«CY
$02.  ©.TE+02 O.181E<01 0.491€-02 0.346E~00 0.9555+00 D.2E+01  C.SE+OC
803. 3 4 4 4 13

904 . /*
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